Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (12)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 81 (2002), S. 1029-1031 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Growth of gallium oxide on n-GaN was realized in H2O by bias-assisted photoelectrochemical (PEC) oxidation using Al as a counterelectrode instead of a Pt commonly used in the PEC process. Although the growth of the oxide was not observed at below 2 V, the initial oxide growth rate of 8.7 nm/min was shown at a bias of 15 V and ultraviolet light intensity of 300 mW/cm2. However, the growth rate lowered and oxide thickness was saturated to 340 nm. The saturated oxide thickness and initial growth rate were increased with the applied bias. The homogeneous oxide growth and near stoichiometric composition of Ga2O3 were observed in Auger electron spectroscopy analysis results. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A "pulsed metalorganic chemical vapor deposition" technique has been developed for lateral overgrowth of GaN thin films on SiC with conducting buffer layers for vertically conducting devices. Growth was carried out at temperatures as low as 950 °C keeping a constant gallium flux while pulsing NH3. We demonstrate that, by varying the NH3 pulse duration, growth morphology can be gradually changed from triangular to rectangular for the lateral overgrowth. Even at a V/III ratio as low as 550, high quality smooth layers with (11¯00) vertical facets were successfully grown with a lateral to vertical growth rate ratio as high as 4:1. Atomic force microscopic measurements show the root-mean-square roughness of the laterally overgrown layers to be 7.0 Å. Scanning thermal microscopy was used to measure a thermal conductivity of 1.7 and 1.5 W/cm K, respectively, for the laterally overgrown film and the GaN deposition in the window region. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 863-865 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on a transparent Schottky-barrier ultraviolet detector on GaN layers over sapphire substrates. Using SiO2 surface passivation, reverse leakage currents were reduced to a value as low as 1 pA at 5 V reverse bias for 200 μm diameter device. The device exhibits a high internal gain, about 50, at low forward biases. The response time (about 15 ns) is RC limited, even in the internal gain regime. A record low level of the noise spectral density, 5×10−23 A2/Hz, was measured at 10 Hz. We attribute this low noise level to the reduced reverse leakage current. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 1161-1163 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on structural, optical, and electrical properties of AlxInyGa1−x−yNGaN heterostructures grown on sapphire and 6H–SiC substrates. Our results demonstrate that incorporation of In reduces the lattice mismatch, Δa, between AlInGaN and GaN, and that an In to Al ratio of close to 1:5 results in nearly strain-free heterostructures. The observed reduction in band gap, ΔEg, determined from photoluminescence measurements, is more than 1.5 times higher than estimated from the linear dependencies of Δa and ΔEg on the In molar fraction. The incorporation of In and resulting changes in the built-in strain in AlInGaN/GaN heterostructures strongly affect the transport properties of the two-dimensional electron gas at the heterointerface. The obtained results demonstrate the potential of strain energy band engineering for GaN-based electronic applications. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 3800-3802 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on quaternary AlInGaN/InGaN multiple quantum well (MQW) light emitting diode structures grown on sapphire substrates. The structures demonstrate high quality of the p–n junctions with quaternary MQW. At low forward bias (below 2 V), the temperature dependent of current–voltage characteristics are exponential with the ideality factor of 2.28, which is in a good agreement with the model of the injected carrier recombination in the space charge region. This ideality factor value is approximately three times lower than for conventional GaN/InGaN light emitting diodes (LEDs). The obtained data indicate the recombination in p–n junction space charge region to be responsible for a current transport in LED structures with quaternary quantum wells. This is in contrast to InGaN based LEDs, where carrier tunneling dominates either because of high doping of the active layer or due to the high density of localized states. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 3807-3809 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on AlGaN/GaN heterostructures and heterostructure field-effect transistors (HFETs) fabricated on high-pressure-grown bulk GaN substrates. The 2d electron gas channel exhibits excellent electronic properties with room-temperature electron Hall mobility as high as μ=1650 cm2/V s combined with a very large electron sheet density ns(approximate)1.4×1013 cm−2. The HFET devices demonstrated better linearity of transconductance and low gate leakage, especially at elevated temperatures. We also present the comparative study of high-current AlGaN/GaN HFETs (nsμ〉2×1016 V−1 s−1) grown on bulk GaN, sapphire, and SiC substrates under the same conditions. We demonstrate that in the high-power regime, the self-heating effects, and not a dislocation density, is the dominant factor determining the device behavior. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 977-979 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present the results of a comparative photoluminescence (PL) study of GaN and InGaN-based epilayers, and InGaN/GaN multiple quantum wells (MQWs). Room-temperature PL spectra were measured for a very broad range of optical excitation from 10 mW/cm2 up to 1 MW/cm2. In contrast to GaN epilayers, all In-containing samples exhibited an excitation-induced blueshift of the peak emission. In addition, the blueshift of the emission in the InGaN epilayers with the same composition as the quantum well was significantly smaller. The comparison of the blueshift in the "bulk" InGaN and in the MQWs allowed us to separate two different mechanisms responsible for this effect: (i) filling of the localized states in In-rich areas and (ii) screening of the polarization electric field in strained MQW structures. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 4375-4377 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on observing a long-wavelength band in low-temperature photoluminescence (PL) spectrum of quaternary Al0.22In0.02Ga0.76N/Al0.38In0.01Ga0.61N multiple quantum wells (MQWs), which were grown over sapphire substrates by a pulsed atomic-layer epitaxy technique. By comparing the excitation-power density and temperature dependence of the PL spectra of MQWs and bulk quaternary AlInGaN layers, we show this emission band to arise from the carrier and/or exciton localization at the quantum well interface disorders. PL data for other radiative transitions in MQWs indicate that excitation-dependent spectra position is determined by screening of the built-in electric field. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 4240-4242 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An ultraviolet light-emitting diode with peak emission wavelength at 340 nm is reported. The active layers of the device were comprised of quaternary AlInGaN/AlInGaN multiple quantum wells, which were deposited over sapphire substrates using a pulsed atomic-layer epitaxy process that allows precise control of the composition and thickness. A comparative study of devices over sapphire and SiC substrates was done to determine the influence of the epilayer design on the performance parameters and the role of substrate absorption. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 817-819 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Operation of InGaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with quaternary AlInGaN barriers at room and elevated temperatures is reported. The devices outperform conventional GaN/InGaN MQW LEDs, especially at high pump currents. From the measurements of quantum efficiency and total emitted power under dc and pulsed pumping, we show the emission mechanism for quaternary barrier MQWs to be predominantly linked to band-to-band transitions. This is in contrast to localized state emission observed for conventional InGaN/InGaN and GaN/InGaN LEDs. The band-to-band recombination with an increased quantum-well depth improves the high-current performance of the quaternary barrier MQW LEDs, making them attractive for high-power solid-state lighting applications. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...