Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1985-1989  (4)
  • Saccharomyces cerevisiae  (7)
  • 1
    ISSN: 1432-0983
    Keywords: Formaldehyde ; DNA-protein cross-links ; Repair ; Saccharomyces cerevisiae ; Hyperresistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The formation and removal of formaldehyde-mediated DNA protein cross-linking was measured by CsCI density gradient analysis in yeast strains of differing resistance to formaldehyde. Wild-type cells and transformants made hyperresistant to formaldehyde by a multi-copy vector containing the yeast SFA gene were specifically labeled in their DNA and incubated in the presence of formaldehyde. Treatment with formaldehyde lead to the formation of equal amounts of DNA protein cross-links; subsequent liquid holding of cells for 24 h resulted in the removal of nearly all DNA protein crosslinks regardless of the original formaldehyde resistance status of the strains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Key words Psoralen sensitivity ; Cytochrome oxidase ; Saccharomyces cerevisiae ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast gene PSO7 was cloned from a genomic library by complementation of the pso7-1 mutant's sensitivity phenotype to 4-nitroquinoline-1-oxide (4NQO). Sequence analysis revealed that PSO7 is allelic to the 1.1-kb ORF of the yeast gene COX11 which is located on chromosome XVI and encodes a protein of 28-kDa localized in the inner mitochondrial membrane. Allelism of PSO7/COX11 was verified by non-complementation of 4NQO-sensitivity in diploids homo- and hetero-allelic for the pso7-1 and cox11::TRP1 mutant alleles. Sensitivity to 4NQO was the same in exponentially growing cells of the pso7-1 mutant and the cox11::TRP1 disruptant. Allelism of COX11 and PSO7 indicates that the pso7 mutant's sensitivity to photoactivated 3-carbethoxypsoralen and to 4NQO is not caused by defective DNA repair, but rather is due to an altered metabolism of the pro-mutagen 4NQO in the absence of cytochrome oxidase (Cox) in pso7-1/cox11::TRP1 mutants/disruptants. Lack of Cox might also lead to a higher reactivity of the active oxygen species produced by photoactivated 3-carbethoxypsoralen. The metabolic state of the cells is important for their sensitivity phenotype since the largest enhancement of sensitivity to 4NQO between wild-type (WT) and the pso7 mutant occurs in exponentially growing cells, while cells in stationary phase or growing cells in phosphate buffer have the same 4NQO resistance, irrespective of their WT/mutant status. Strains containing the pso7-1 or cox11::TRP1 mutant allele were also sensitive to the oxidative stress-generating agents H2O2 and paraquat. Mutant pso7-1, as well as disruptant cox11::TRP1, harboured mitochondria that in comparison to WT contained less than 5% and no detectable Cox activity, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 11 (1986), S. 211-215 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Hyperresistance ; DNA damaging agents ; Genotoxic effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In order to study resistance to DNA damaging agents, yeast DNA segments conferring hyperresistance in this organism to such genotoxic agents were selected for among yeast cells transformed by a yeast genome library based on the multi-copy vector plasmid YEp13. Genetic variants hyperresistant to 4-nitroquinohne-N-oxide, formaldehyde, and alkylating agents were isolated and the respective hyperresistance determinants shown to co-segregate with the vector plasmid. Phenotypical characterization indicated different degrees of resistance, few cases of cross-resistance and differing structural stability of the cloned DNA. By transfer to E. coli and subsequent retransformation of yeast a number of plasmids was shown to stably carry the genetic information for hyperresistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mutagen hyperresistance ; Southern, Northern analysis ; Gene transplacement ; Transposon mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The genes SNQ and SFA confer hyperresistance to 4-NQO and FA when present on a multi-copy plasmid in yeast. Both are non-essential genes since transplacement of SNQ by a disrupted snq-0::LEU2 yielded stable and viable haploid integrants. Southern analysis revealed that SNQ and SFA are single-loci genes, and OFAGE analysis showed that they are located on chromosome XIII and IV, respectively. Northern blot analysis of SNQ and SFA revealed poly(A)+ RNA transcripts of 2 kb and 1.7 kb, respectively. Nuclease S 1 mapping showed SNQ to have a coding region of 1.6 kb and SFA, one of 1.3 kb. The 5′ coding regions were determined for both genes, while the 3′ end could only be determined for gene SNQ. Both genes do not appear to contain introns. The SFA locus was also mapped by transposon mutagenesis. Tn10-LUK integrants disrupted the SFA gene function at sites that were determined by subcloning to lie within the SFA transcription unit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; DNA repair ; Cross-link ; Transposon mapping ; Nitrogen mustard
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have isolated yeast gene SNM1 via complementation of sensitivity towards bi- and tri-functional alkylating agents in haploid and diploid yeast DNA repair-deficient snm1-1 mutants. Four independent clones of plasmid DNA containing the SNM1 locus were isolated after transformation with a YEp24-based yeast gene bank. Subcloned SNM1-containing DNA showed (i) complementation of the repair-deficiency phenotype caused by either one of the two different mutant alleles snm1-1 and snm1-2 ts; (ii) complementation in haploid and diploid yeast snm1-1 mutants by either single or multiple copies of the SNM1 locus; and (iii) that the SNM1 gene is at most 2.4 kb in size. Expression of SNM1 on the smallest subclone, however, was under the control of the GAL1 promotor. Gene size and direction of transcription was further verified by mutagenesis of SNM1 by Tn10-LUK transposon insertion. Five plasmids containing Tn10-LUK insertions at different sites of the SNM1-containing DNA were able to disrupt function of genomic SNM1 after gene transplacement. Correct integration of the disrupted SNM1::Tn10-LUK at the genomic site of SNM1 was verified via tetrad analysis of the sporulated diploid obtained after mating of the SNM1::Tn10-LUK transformant to a haploid strain containing the URA3 SNM1 wild-type alleles. The size of the poly(A)+ RNA transcript of the SNM1 gene is 1.1 kb as determined by Northern analysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 250 (1996), S. 162-168 
    ISSN: 1617-4623
    Keywords: DNA repair ; Regulation ; Gene fusion ; DRE element ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The interstrand cross-link repair geneSNM1 ofSaccharomyces cerevisiae was examined for regulation in response to DNA-damaging agents. Induction ofSNM1-lacZ fusions was detected in response to nitrogen mustard, cis-platinum (II) diamine dichloride, UV light, and 8-methoxypsoralen + UVA, but not after heat-shock treatment or incubation with 2-dimethyl-aminoethylchloride, methylmethane sulfonate or 4-nitroquinoline-N-oxide. The promoter ofSNM1 contains a 15 bp motif, which shows homology to the DRE2 box of theRAD2 promoter. Similar motifs have been found in promoter regions of other damage-inducible DNA repair genes. Deletion of this motif results in loss of inducibility ofSNM1. Also, a putative negative up-stream regulation sequence was found to be responsible for repression of constitutive transcription ofSNM1. Surprisingly, no inducibility ofSNM1 was found after treatment with DNA-damaging agents in strains without an intactDUN1 gene, while regulation seems unchanged insad1 mutants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; chromosome II sequence ; CDC28 ; SUR1 homolog ; putative surface protein ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The sequence of a 5653 bp DNA fragment of the right arm of chromosome II of Saccharomyces cerevisiae contains two unknown open reading frames (YBR1212 and YBR1213) next to gene CDC28. Gene disruption reveals both putative genes as non-essential. ORF YBR1212 encodes a predicted protein with 71% similarity and 65% identity (total polypeptide of 376 aa) with the 378 aa Sur1 protein of S. cerevisiae, while the putative product of ORF YBR1213, which is strongly expressed, has 28% identity with a Lactococcus lactis-secreted 45 kDa protein and 24% identity with the Saccharomyces cerevisiae AGA1 gene product. The total sequence of the fragment has been submitted to the EMBL databank (accession number X80224).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...