Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Phaseolus vulgaris-leucoagglutinin ; Hippocampus ; Septum ; Entorhinal cortex ; Limbic system ; Fimbria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The fimbria is a major route for afferent and efferent fibers of the hippocampal formation. However, little is known about the intrinsic organization of the fimbria-fornix complex. In this study, the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) was used to analyze the ultrastructure and topography of identified fiber tracts within the fimbria-fornix. Septo-hippocampal fibers are loosely distributed throughout the fimbria-fornix. Commissural fibers cross the midline in the ventral hippocampal commissure and form a tight fiber bundle in the fimbria. Crossed entorhino-hippocampal fibers cross the midline in the ventral hippocampal commissure rostral to the commissural fiber bundle, and crossed entorhino-entorhinal fibers pass through the dorsal hippocampal commissure. This suggests a topographical organization of fiber tracts within the fimbria-fornix that reflects the laminar organization of the hippocampal target structure: fibers of the diffusely terminating septohippocampal projection are loosely distributed throughout the fimbria-fornix, while those projections that are known to terminate in specific laminae of the hippocampal formation (commissural projection, crossed entorhino-hippocampal projection) form fiber bundles within the fimbria and the ventral hippocampal commissure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 41 (1981), S. 329-337 
    ISSN: 1432-1106
    Keywords: Caudate nucleus ; Golgi/EM ; Corticocaudate projection ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A combined Golgi/electron microscopic technique was used to investigate the fine structure and synaptology of Golgi-stained spiny neurons in the caudate nucleus of the cat. In order to study the termination sites of cortical afferents on Golgistained spiny neurons, cortical fibres were caused to degenerate by making extensive cortical lesions 3 days prior to fixation of the animals. When examined in the electron microscope, perikarya of labelled spiny neurons have a round nucleus, a few mitochondria and microtubules, and a poorly developed Golgi apparatus and rough endoplasmic reticulum. Only rarely are axo-somatic contacts seen. Labelled dendrites exhibit a moderate number of microtubules and sometimes elongated mitochondria. Numerous labelled spines are seen in the vicinity of their parent dendrites. They are contacted by smaller type I and type III boutons and larger type IV boutons (Hassler et al. 1978). Large boutons filled with clear round vesicles establish symmetric contacts with labelled dendritic shafts. Degenerating boutons of cortical afferents are seen in contact with spines and, more rarely, with dendritic shafts of Golgi-stained spiny neurons. All degenerating boutons synapsing with labelled structures are found some distance from the cell body. No contacts of degenerating cortical boutons with the soma or with stem dendrites of Golgi-stained spiny neurons are found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 30 (1977), S. 549-560 
    ISSN: 1432-1106
    Keywords: Hippocampus ; Synaptogenesis ; Entorhinal lesion ; Transneuronal effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The granule cell axons of the dentate gyrus (mossy fibers, MF) terminate with large, characteristic boutons on neurons of the regio inferior of the hippocampus. To study transneuronal effects on mossy fiber synaptogenesis, the entorhinal cortex, which is the source of the main afferent to the granule cells, was removed in 3-day old rats. After a postoperative survival time of 27 days, the animals were killed and the brain prepared for electron microscopy. No clear postlesional changes were observed in the inner structure of the presynaptic mossy fiber terminals. The mean size of MF boutons was roughly the same in the experimental animals as compared to normal, unoperated rats of the same age (4.19 μm2, SD 1.9; and 4.29 μm2, SD 2.2, respectively). On the postsynaptic side, however, some remarkable changes were found. In the operated animals, the number and total area of dendritic spines in synaptic contact with MF has significantly decreased in comparison with the controls. Also the size of a single spine in the operated animals was only 64 % of that in the normal. These changes were accompanied by a decrease in MF total perimeter and MF-dendritic contact length in the experimental animals. The length of the MF specialized synaptic contact was found to be correlated with the number and size of dendritic spines. Thus accordingly, though the length of the MF specialized contact with the dendritic shaft did not change, the absolute length of MF specialized contact with postsynaptic spines was decreased in the lesioned animals due to the numerical and size reduction of the spines. This suggests that normally functioning entorhinal afferents to the granule cells are necessary for the normal development of dendritic spines in contact with hippocampal mossy fibers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 286 (1996), S. 293-303 
    ISSN: 1432-0878
    Keywords: Key words: Phaseolus vulgaris leucoagglutinin ; Anterograde tracing ; Entorhinal cortex ; Crossed temporo-ammonic pathway ; Crossed temporo-dentate pathway ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Neurons of the entorhinal cortex project to the hippocampus proper and dentate gyrus. This projection is called the ”perforant pathway” because it perforates the subiculum; current usage applies this term to all entorhino-hippocampal fibers. However, entorhinal fibers also reach Ammon’s horn via the alveus (”alvear pathway”), an alternative route first described by Cajal. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) was used in order to analyze the contribution of this pathway to the temporo-ammonic projection. In the temporal portion of the rat hippocampus, most of the entorhinal fibers reach Ammon’s horn after perforating the subiculum (classical perforant pathway). At more septal levels, the number of entorhinal fibers that take the alvear pathway increases; in the septal portion of the hippocampal formation, most of the entorhinal fibers to hippocampal subfield CA1 reach this subfield via the alveus. These fibers make sharp right-angle turns in the alveus, perforate the pyramidal cell layer, and finally terminate in the stratum lacunosum-moleculare. The crossed temporo-ammonic fibers reach their termination area in the stratum lacunosum-moleculare of CA1 almost exclusively via the alveus. These data indicate that the alveus is a major route by which entorhinal fibers reach their targets in CA1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...