Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Botulinum A toxin  (4)
  • Kidney  (3)
  • Permeability  (3)
  • Pharmacokinetics  (3)
Material
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 688 (1982), S. 486-494 
    ISSN: 0005-2736
    Keywords: (Erythrocyte) ; Amphotericin B ; Palytoxin ; Permeability
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0014-5793
    Keywords: Botulinum A toxin ; Chain, heavy ; Chain, light ; Chromaffin cell, permeabilized ; Exocytosis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 276 (1973), S. 327-340 
    ISSN: 1432-1912
    Keywords: Tetanus Toxin ; Pharmacokinetics ; Central Nervous System ; Iodine Labelling ; Receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to understand the symptomatology of generalized tetanus from the pharmacokinetics of the toxin, 125I-labelled toxin was injected i.v. in rats without and with antitoxin. 1. After a few hours latency, brain stem and spinal cord concentrate radioactive material up to the third day. The decline of radioactivity is very slow, semilogarithmic, and can be followed up to the 24th day after injection. In contrast, forebrain and cerebellum do not bind measurable radioactivity. Less than 1% of the radioactivity injected is found in the CNS. 2. The symptoms of tetanus start some time after the bulk of labelled toxin has been taken up by the CNS. They cease before all radioactivity has left it. 3. Antitoxin, given simultaneously, prevents the onset of symptoms and the uptake of radioactivity by the CNS. When given 10 h after labelled toxin, it nearly abolishes the fixation and still prevents the onset of symptoms. When given 48 h after toxin, it is nearly ineffective in both respects. Antitoxin first delays, then enhances the elimination of labelled toxin from the blood. 4. Labelled antitoxin is not enriched in the CNS. 5. The uptake of radioactivity into various parts of spinal cord corresponds well to their relative content in grey matter. 6. The pharmacokinetic behaviour of 125I-toxoid resembles that of toxin. However, in order to get measurable fixation to the CNS at least 50 times higher amounts are to be applied. It is concluded that the barrier between blood and CNS is practically impermeable to tetanus toxin. The results can be harmonized best with the assumption that generalized tetanus is nothing else than a multiple local tetanus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 300 (1977), S. 57-66 
    ISSN: 1432-1912
    Keywords: Aminoglycoside ; Gentamicin ; Kidney ; Electron microscopic autoradiography ; Lysosomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Upon intravenous injection of 3H-gentamicin in rats, radioactivity in serum rapidly declined to 3% of total within 1 h. Kidneys accumulated a constant amount (14%) of the injected radioactivity between 2 and 6 h after injection. In mice, simultaneous or prior application of unlabeled gentamicin (10 mg/kg) diminished the renal concentration of 3H-gentamicin, and aprotinin (10 mg/kg) was able to compete with labeled aprotinin. Aprotinin did not diminish the renal accumulation of gentamicin and vice versa. However, since 10 mg/kg aprotinin raised also the plasma concentrations of both 3H-gentamicin and 125I-aprotinin, the evidences resulting from these experiments are limited. Mouse kidney cortex was processed for light and electron microscopic autoradiography at different times following i.v. injection of 3H-gentamicin. Gentamicin enters the apical part of proximal tubule cells. Initially, brush border and basement membrane labeling is prominent, whereas lysosomes appear as intense and prevalent stores 20 min or later after injection. Fractionation of 3H-gentamicin loaded kidneys showed a similar distribution pattern of radioactivity and the lysosomal marker β-galactosidase. The same was true when the crude lysosomal fraction was subjected to density gradient centrifugation, which corroborates the microscopical findings. Radioactivity is partially bound to lysosomal structures, for repeated freezing of loaded lysosomes left 35% of radioactivity particle-bound. It is concluded that both gentamicin and peptides are handled in a similar manner by adsorption, followed by endocytosis and lysosomal sequestration in proximal tubule cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 316 (1981), S. 135-142 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum A toxin ; Choline ; Gangliosides ; Fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Tetanus toxin and, to a lesser degree, botulinum A toxin inhibit partially and noncompetitively the uptake of [3H]choline into a crude synaptosomal fraction from rat brain cortex. Botulinum toxin acts by its neurotoxin content. The effect is not due to nonspecific synaptosomal damage by the toxins as shown by the lactate dehydrogenase occlusion test, by the absence of swelling and by the preservation of choline stores. The ratio between [3H]acetylcholine and [3H]choline was decreased by both toxins. Inhibition by either toxin depends strongly on the temperature and duration of incubation, and is preceded by an initial latency period. The effect of tetanus toxin, once manifest, is largely resistant against antitoxin. It is not significantly diminished by pretreatment of the synaptosomes with V. cholerae neuraminidase. Fixation of 125I-tetanus toxin proceeds fast, is largely independent of temperature and is diminished by pretreatment of the synaptosomes with neuraminidase. Thus only some of the fixation sites, and not the long-chain gangliosides, are required for the effects of tetanus toxin. A slow, temperature-sensitive process links the fixation with the action. In contrast to rat synaptosomes the chicken preparation is more sensitive to botulinum A than to tetanus toxin, which reflects the differences in sensitivity between live birds and rodents. Our data underline the similarities between the effects of tetanus and those of botulinum A toxin. Their dependence on time and temperature, the time dependence of efficacy of antitoxin, and the concordance in species specificity indicate that the in vitro system mirros some crucial features of poisoning of isolated organs and live animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 318 (1981), S. 105-111 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum A toxin ; Noradrenaline outflow ; Gangliosides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Tetanus toxin and, to a lesser degree, botulinum A toxin partially depress the basal and the potassium evoked outflow of [3H]noradrenaline from preloaded particulate rat forebrain cortex. The effect is due to the toxins and not to any contaminant, as shown by dialysis, heating and antitoxin treatment, and also by replacement of crystalline botulinum A toxin with purified neurotoxin. Tetanus toxin also depresses the outflow due to sea anemone toxin II, 4-aminopyridine and d-amphetamine. The effect of the toxins proceeds with time and strongly depends on temperature. Once manifest the tetanus toxin effect is not reversed by antitoxin. Pretreatment with V. cholerae neuraminidase degrades the long-chain gangliosides quantitatively to GM1. Tetanus toxin, applied subsequently remains fully active. High concentrations of tetanus toxin and botulinum A neurotoxin promote the outflow of small amounts of tritium within short incubation times. It is concluded: a) Tetanus toxin is a broad range neurotoxin which acts on processes subsequent to the depolarization step. b) Long-chain gangliosides are only binding sites, but not receptors of tetanus toxin. c) Botulinum A toxin is less potent but resembles tetanus toxin in both promoting and depressing the outflow of noradrenaline.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 319 (1982), S. 101-107 
    ISSN: 1432-1912
    Keywords: Palytoxin ; Ouabain ; Erythrocytes ; Permeability ; ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Palytoxin in concentrations as low as 1 pM raises the potassium permeability of rat, human and sheep erythrocytes, and the sodium permeability of human erythrocytes. The release of potassium or sodium from human cells also occurs when extracellular sodium is replaced by choline. 2. Ouabain inhibits the release due to palytoxin of potassium ions from human, sheep and rat erythrocytes, and also the release of sodium ions from human cells. The glycoside effect is specific since a) it is already prominent with 5×10−8 M ouabain b) rat erythrocytes are less sensitive than human cells to ouabain c) potassium release due to amphotericin B or the Ca2+ ionophore A23187 is not influenced by ouabain and d) dog erythrocytes are resistant to palytoxin as well as to ouabain. 3. Palytoxin has no direct influence on the Na+, K+-ATPase. It inhibits the binding of [3H]ouabain to erythrocyte membranes within the same concentration range as unlabelled ouabain. It partially displaces bound [3H]ouabain, and partially inhibits the inactivation of erythrocyte ATPase by the glycoside. Depletion of ATP or of external Ca2+ renders the cells less sensitive to palytoxin. Nevertheless inhibition by ouabain can be still demonstrated with human cells whose ATP stores had been largely exhausted, and also in the absence of external Ca2+. 4. Palytoxin decreases the surface tension at the air-water interface. We assume that the formation of nonspecific pores by palytoxin is linked with its surface activity. Further experiments should demonstrate whether ouabain prevents the binding of palytoxin to erythrocytes (“receptor hypothesis”), or whether an ouabain-sensitive hydrolysis of trace amounts of ATP (“metabolic hypothesis”) promotes the palytoxin effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 325 (1984), S. 85-87 
    ISSN: 1432-1912
    Keywords: Na+, K+-ATPase ; Palytoxin ; Ouabain ; Kidney ; Erythrocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Hog kidney Na+, K+-ATPase, purified to the microsomal stage and activated with detergent, binds palytoxin, as shown by the nearly complete competition of the toxin with 3H-ouabain. The K i-values of palytoxin, but not of ouabain, depend on the protein concentration; this indicates additional binding sites for the toxin on kidney membranes. — Palytoxin inhibits the enzymatic activity of the detergent-activated preparation nearly completely (IC50 8·10−7 mol/l). Inhibition of ATPase activity and of ouabain binding are promoted by borate, a known activator of palytoxin. — Palytoxin also inhibits the Na+, K+-ATPase of erythrocyte ghosts in the same dose range. The data are discussed in context with the hypothesis (Chhatwal et al. 1983) that palytoxin raises the cellular permeability by altering the state of Na+, K+-ATPase or its environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 264 (1969), S. 476-493 
    ISSN: 1432-1912
    Keywords: Kinins ; Permeability ; Heat ; Inflammation ; Kinine ; Permeabilität ; Hitze ; Entzündung
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The suboutis of rat paws heated (46,5° C) in situ has been perfused. Kinin activity could be demonstrated regularly in the fluid which was collected in ice. When the solutions were tested immediately after having passed the tissue, only some of the experiments yielded positive results. Native and125Jlabelled kininogen as well as kininogenase and kininase activities passed into the perfusates. The sensitivity to dextran and the kinin release on heating were, in contrast to recent reports, not correlated. 2. The release of the components of the kinin system approximately paralleled that of labelled human albumin. Their concentration rose until about 1 hour after the start of the heating. There was no priority of the components of the kinin system when compared with human albumin which can be regarded as permeability indicator. 3. Intravenously injected carboxypeptidase B, because of its lower molecular weight, entered the interstitial fluid more easily than did the plasma carboxypeptidase N. Its blood level decreased rapidly; but sufficient tissue concentrations could be maintained by intravenous infusions. Neither the volume nor the time dependence of the thermic edema changed during carboxypeptidase B-infusions. The same was true for infusions of trasylol, whereas phenylbutazone inhibited the edema significantly. Edema formed by short heating (30 sec, 55° C) was equally resistant to carboxypeptidase B. 4. In the skin and muscles of the heated rat paw, carbon particles mainly stained the capillary walls. This finding argues against a considerable involvement of “classical” mediators which should induce venular lesions. 5. Infusion of large amounts of bradykinin into the arterial supply did not imitate the thermic edema; neither has bradykinin been found in the perfusate of the subcutis. 6. In the light of these findings, a significant role of the kinin system in the thermic edema of the rat paw is to be doubted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 273 (1972), S. 313-330 
    ISSN: 1432-1912
    Keywords: Snake Venom ; Phospholipase A ; Potentiation ; Iodine Labelling ; Pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to obtain better insight into the potentiation of the toxicity of phospholipase A by crotapotin, we studied the distribution and elimination of these substances and of their combination. Blood Plasma Concentration. Iodine-labelled phospholipase A leaves the bloodstream of mice and rabbits very quickly after i.v. application. Simultaneous injection of crotapotin speeds the elimination of the enzyme. After subcutaneous application in mice the plasma concentration of phospholipase A depends on the quantity of enzyme injected. It is higher when the enzyme is complexed with crotapotin before injection. The plasma concentration of phospholipase A fails, however, to be proportional to the toxicity of the complex after subcutaneous application. Crotapotin leaves the blood of mice also very quickly after i.v. application. Organ Distribution. After i.v. application in mice, phospholipase A is heavily enriched in the liver. By simultaneous application of crotapotin, the enzyme is partially diverted to the kidneys. Only a small percentage of injected enzyme is found in the brain. This percentage is just significantly raised by simultaneous application of crotapotin. The diaphragm contains about the twofold amount of phospholipase A per wet weight as compared with other samples of skeletal musculature. With crotapotin, there is a slight increase of the radioactivity in all muscles investigated, with different degrees of significance. Crotapotin is enriched in mouse kidneys after i.v. application. Renal Elimination. The renal elimination of the acidic crotapotin is higher than that of the basic phospholipase A. In this respect, the latter resembles the basic polypeptide Trasylol®. Doses of phospholipase A above 0.25 mg/kg cause intravital hemolysis. The hemolysis is prevented if a small amount of crotapotin is applied simultaneously. Our findings show that the combination with crotapotin distinctly alters the pharmacokinetic behaviour of Crotalus terrificus phospholipase A. However, our data do not explain the tremendous increase of phospholipase A toxicity caused by the non-toxic crotapotin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...