Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Cold-lesion injury ; Brain edema ; Blood-brain barrier ; Alkaline phosphatase ; Anionic sites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Micro-blood vessels (MBVs), located in the area of edema, were studied in cat brain at various time intervals (1 h, 24 h, 7 days) after cold-lesion injury. Both cold-injured and adjacent gyri were examined for blood-brain barrier (BBB) permeability to i. v. injected horseradish peroxidase (HRP) with circulation times of 40 min and 24 h. Evans blue (EB) was used as a tracer for gross evaluation of the extension of brain edema. Localization of alkaline phosphatase (AP) and binding of cationized ferritin (CF), considered as a marker of anionic sites, were also studied ultrastructurally. Twenty-four hours after cold injury, the extravasated edema fluid, outlined by EB tracer, was observed to be spreading through the white matter (WM) into the adjacent gyrus. At this time, numerous, larger than capillary MBVs, presumably arterioles and venules located in the edematous WM, showed accumulations of HRP injected at the time of the operation, in the basement membrane, in abluminal pits, and in numerous pinocytotic vesicles and vacuoles of endothelial cells (ECs). The animals killed after 24 h with 40 min HRP circulation showed extravasation of HRP tracer in a zone underlying the necrotic cold injury lesion. On the other hand, there was no evidence of an abnormal HRP leakage in the further removed areas of edema in the WM, particularly in the adjacent gyrus. These observations suggest that a reverse, vesicular transport of HRP across the ECs of some MBVs represents one of several possible mechanisms responsible for the removal of extravasated proteins and of edematous fluid from brain extracellular space. This reverse transport is accompanied by a disruption of the surface anionic layer and changed polarity of ECs manifested by the relocation of AP activity from luminal to abluminal plasmalemma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Blood-brain-barrier ; Cerebral blood flow ; Reactive hyperemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The behavior of the blood-brain barrier (BBB) was studied in cats following release after 1-h middle cerebral artery (MCA) occlusion. The regional cerebral blood flow (rCBF) was determined by hydrogen clearance method in the caudate nucleus and the cerebral cortex. The BBB was assayed with Evans blue (EB) tracer and by immunohistochemical peroxidaseantiperoxidase (PAP) method. Following release of MCA occlusion, there were two openings of the BBB, separated by a refractory period. The first opening, occurred shortly after recirculation; this was associated with rCBF below 15 ml/100 g/min during the ischemic period and a pronounced reactive hyperemia promptly following release of MCA occlusion. A refractory period of the BBB was indicated by the absence of EB leakage in cats injected with the tracer 30 min before killing at 3 h after recirculation, although the rCBF values in these animals were even lower (6±1 ml/100 g/min) during occlusion, and all of them showed a pronounced hyperemia after recirculation. The occurrence of the previous BBB opening in these animals was confirmed by the PAP staining. The second opening of the BBB was observed at 5 and 72 h after recirculation in cats which were injected with EB 30 min before killing, and which showed rCBF below 15 ml/100 g/min during occlusion, followed by a pronounced reactive hyperemia. No EB extravasations were observed at any time in cats in which the rCBF during occlusion was above 15 ml/100 g/min and which failed to show a marked reactive hyperemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Blood-brain barrier ; Cerebral blood flow ; Glucose utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Changes in morphology, behavior of the blood-brain barrier (BBB), regional cerebral blood flow (rCBF), and local cerebral glucose utilization (LCGU) were assessed and correlated in Mongolian gerbils following 5 min cerebral ischemia, produced by bilateral clamping of the common carotid arteries. The morphological changes were confined to the hippocampus and revealed a conspicuously delayed destruction of the CA1 neurons, occurring after 3 days. Following release of carotid occlusions, there were two separate openings of the BBB. One, occurring shortly after recirculation, was associated with focal hyperemia in the cerebral cortex, hippocampus and basal ganglia; the second opening was observed after several days and was associated with severe neuronal destruction in the CA1 sector. Correlation of quantitative and qualitative rCBF assays with14C-deoxyglucose autoradiographic observations indicated an uncoupling between blood flow and glucose metabolism, observed in the hippocampus at 10 min after recirculation. The described changes provide a further insight into the post-ischemic events which determine the outcome of ischemic injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...