Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chondrogenesis  (2)
  • Chemotaxis  (1)
  • Estradiol and progesterone  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 35 (1983), S. 481-485 
    ISSN: 1432-0827
    Keywords: Chemotaxis ; Bone ; Osteoblasts ; Bone proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary When demineralized bone matrix powder is implanted subcutaneously in the rat, the early responses involve the appearance and proliferation of mesenchymal cells at the site of implantation, followed by cartilage and bone formation. The ability of cells to migrate to the implant suggests that chemotaxis may be a critical event in this process. Therefore, using the modified Boyden chamber assay, we tested extracts of demineralized bone matrix for chemotactic activity. We have identified and partially purified, on molecular sieve chromatography, a heat labile and trypsin-sensitive protein (Mr=60,000–70,000) that is a potent chemoattractant for mouse calvaria, osteoblast-like cells (MMB-1), but not for monocytes (putative osteoclast precursors). These findings suggest that chemotactic protein(s) have a significant role in the recruitment of osteoprogenitor cells to a site of bone repair.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 35 (1983), S. 732-739 
    ISSN: 1432-0827
    Keywords: Mesenchymol cell proliferation ; Chondrogenesis ; Osteogenesis ; Proteoglycans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The influence of retinoic acid on matrix-induced endochondral bone differentiation was determined. Retinoic acid was administered during discrete stages of endochondral bone formation, specifically, mesenchymal cell proliferation, chondrogenesis, bone formation, and mineralization. In retinoic acid-treated rats examined on day 3 following matrix implantation, biochemical markers for mesenchymal cell proliferation were about 50% of the controls. Chondrogenesis on day 7, assessed by35SO4 incorporation into proteoglycans, was 27% of the control. In addition, dissociative extraction of proteoglycans with 4.0 M guanidine-HCl and chromatography on Sepharose CL-2B revealed the synthesis of a smaller molecular weight proteoglycan when compared to controls which exhibited the cartilage-specific type. Osteogenesis and bone mineralization were monitored by alkaline phosphatase activity and45Ca incorporation. On day 11 alkaline phosphatase activity was decreased by 40% and45Ca incorporation was 48% of the control. These results revealed the multiple foci of the actions of excess vitamin A.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 35 (1983), S. 609-614 
    ISSN: 1432-0827
    Keywords: Matrix-induced endochondral bone formation ; Estradiol and progesterone ; Ornithine decarboxylase ; Mesenchymal cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The influence of estradiol and progesterone, alone or in combination, on the discrete phases of matrix-induced endochondral bone formation was investigated. Administration of estradiol and progesterone in combination increased mesenchymal cell proliferation, as indicated by [3H] thymidine incorporaton into acid precipitable material. However, ornithine decarboxylase (ODC) activity was significantly suppressed by the combination of estradiol and progesterone. Also, this treatment did not influence the35SO4 incorporation into proteoglycans on day 7. Mineralization of newly induced bone was quantitated by alkaline phosphatase,45Ca incorporation into bone mineral and calcium content, and was found to be significantly increased by progesterone alone and in combination with estradiol in both matrix-induced plaques and tibial metaphysis. These results demonstrated the stimulatory role of progesterone in combination with estradiol in bone formation and mineralization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 33 (1981), S. 425-430 
    ISSN: 1432-0827
    Keywords: Bone induction ; Insulin ; Chondrogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The influence of somatostatin on discrete stages of collagenous-matrix-induced endochondral bone formation has been investigated. Local injection of somatostatin, i.e., without any measurable systemic effect, resulted in a 75% reduction of cell proliferation as measured by [3H]thymidine incorporation and ornithine decarboxylase activities. The minimum effective inhibitory dose of somatostatin was 0.25 µg/day. Twice daily local injections of the hormone during cartilage formation also resulted in an inhibition, but this was shown to be due to impaired cell proliferation rather than to a direct effect of somatostatin on differentiation. Injection of somatostatin into developing bone tissue after the cartilage stage impaired osteogenesis, assessed by45Ca incorporation and alkaline phosphatase activity. Concurrent injections of insulin and somatostatin obliterated the inhibitory effect of the latter on cell proliferation. Somatostatin can locally regulate the proliferation and differentiation of chondroprogenitor and osteoprogenitor cells in vivo and may directly contribute to the regulation of bone growth by its ability to counteract the stimulatory effect of insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...