Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1440
    Keywords: Key words B-cell chronic lymphocytic leukemia ; Fluorescence in situ hybridization ; TP53 ; 11q22-q23 ; Comparative genomic hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In B-cell chronic lymphocytic leukemia (B-CLL) clonal chromosome aberrations are detected in approximately 40–50% of tumors when using conventional chromosome banding analysis. Most studies find trisomy 12 to be the most frequent chromosome aberration, followed by structural aberrations of the long arm of chromosomes 13 and 14. Trisomy 12 and the ”14q+” marker are associated with shorter survival times, while the patients with 13q abnormalities have a favorable outcome, similar to those with a normal karyotype. The development of molecular cytogenetic techniques has greatly improved our ability to detect chromosome aberrations in tumor cells. Using fluorescence in situ hybridization, chromosome aberrations can be detected not only in dividing cells but also in interphase nuclei, an approach referred to as interphase cytogenetics. The prevalence of specific aberrations in B-CLL is currently being reassessed by interphase cytogenetics. By far the most frequent abnormality are deletions involving chromosome band 13q14, followed by deletions of the genomic region 11q22.3-q23.1, trisomy 12, deletions of 6q21-q23, and deletions/mutations of the TP53 tumor suppressor gene at 17p13. The evaluation of the true incidence of these aberrations now provides the basis for more accurate correlations with clinical characteristics and outcome. Deletions/mutations of the TP53 gene have been shown to be associated with resistance to treatment and to be an independent marker for poor survival. 11q deletions have been associated with extensive nodal involvement, rapid disease progression, and short survival times. Whether trisomy 12, 13q14, and 6q deletions have a prognostic impact awaits further study. The application of these molecular cytogenetic techniques will also contribute to the identification of the pathogenetically relevant genes that are affected by the chromosome aberrations in B-CLL.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1440
    Keywords: T-cell lymphoma ; Osteosclerosis ; Lymphokines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A patient with peripheral T-cell Lymphoma and aquired, systemic osteosclerosis is described. Bone histology showed a spectacular activation of osteoblasts accompanyed by massive new bone formation. Alkaline phosphatase in serum was elevated and increased to 〉2000 U/l when the lymphoma became refractory to chemotherapy. In the patient's serum an osteoblast-activating factor could be demonstrated using a rat osteogenic osteosarcoma cell line (ROS 17/2.8). The factor was absent during remission of the tumor. We conclude that osteosclerosis was a paraneoplastic syndrome in this patient due to the secretion of an osteoblast-stimulating factor by the T-cell lymphoma. This situation is similar to the secretion of osteoclast-activating factors described in B-cell lymphomas, particularly multiple myeloma. The characterization of such a factor could be of therapeutic relevance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Annals of hematology 76 (1998), S. 101-110 
    ISSN: 1432-0584
    Keywords: Key words B-CLL ; FISH ; Chromosome abnormalities ; TP53 ; 11q22-q23 ; Prognostic factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The genetic alterations underlying the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL) are difficult to assess. Cytogenetic studies are hindered by the low in vitro mitotic activity of the tumor cells and the limited resolution of chromosome banding. Molecular genetic analyses are hampered by nonclonal cells contained in the specimens and by the limited knowledge of candidate genes involved. As a complement to cytogenetic and molecular genetic techniques, fluorescence in situ hybridization (FISH) has proven powerful in the molecular cytogenetic analysis of B-CLL. FISH allows the detection of aberrations such as trisomies, deletions, and translocation breakpoints on the single cell level in dividing as well as nondividing cells without the prerequisite of detailed physical maps or knowledge of involved genes. As detected by the interphase cytogenetic FISH approach, the most common chromosome abnormalities of B-CLL are deletions in band 13q14, followed by deletions in 11q22-q23, trisomy 12, deletions in 17p13, and deletions in 6q21. Abnormalities in 17p13 seem to involve the TP53 tumor suppressor gene, but as yet no candidate genes have been identified for the other frequent aberrations. Toward the identification of such genes by positional cloning, FISH can be applied for detailed aberration mapping at the molecular level. Furthermore, the accurate detection of chromosome aberrations in B-CLL by FISH provides a valid basis for the evaluation of their prognostic significance. Inactivation of TP53 in 17p13 and deletions in 11q22-q23 have already been shown to be among the most important independent prognostic factors. Genetic abnormalities may eventually provide biological parameters, allowing a risk assessment for individual patients at the time of diagnosis of this clinically heterogeneous disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...