Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 3567-3572 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The growth due to the Rayleigh–Taylor (RT) instability of single-wavelength surface perturbations on planar foils of copper-doped beryllium [BeCu] was measured. These foils were accelerated by x-ray ablation, with a shaped drive designed to produce ∼1.5 ns of uniform acceleration. A range of wavelengths (λ=30–70 μm) was used with initial amplitudes η0/λ=0.03–0.04. Tabulated opacities from detailed atomic physics models, HOPE [J. Quant. Spectros. Radiat. Transf. 43, 381 (1990)], OPAL [Astrophys. J. 397, 717 (1992)] and super transition array (STA) [Phys. Rev. A 40, 3183 (1989)] were employed in simulations. Other ingredients which can affect modeling, such as changes in the equation of state and the radiation drive spectrum, were also examined. This calculational model agrees with the Nova single wavelength RT perturbation growth data for the BeCu. No adjustments to the modelling parameters were necessary. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One- and two-dimensional, time-resolved x-ray radiographic imaging at high photon energy (5–7 keV) is used to study shock propagation, material motion and compression, and the effects of shear flow in solid density samples which are driven by x-ray ablation with the Nova laser. By backlighting the samples with x rays and observing the increase in sample areal density due to shock compression, the trajectories of strong shocks (∼40 Mbars) in flight are directly measured in solid density plastic samples. Doping a section of the samples with high-Z material (Br) provides radiographic contrast, allowing a measurement of the shock-induced particle motion. Instability growth due to shear flow at an interface is investigated by imbedding a metal wire in a cylindrical plastic sample and launching a shock in the axial direction. Time-resolved radiographic measurements are made with either a slit-imager coupled to an x-ray streak camera or a pinhole camera coupled to a gated microchannel plate detector, providing ∼10 μm spatial and ∼100 ps temporal resolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: During the last few years, considerable progress has been made in simulating astrophysical phenomena in laboratory experiments with high-power lasers. Astrophysical phenomena that have drawn particular interest include supernovae explosions; young supernova remnants; galactic jets; the formation of fine structures in late supernovae remnants by instabilities; and the ablation-driven evolution of molecular clouds. A question may arise as to what extent the laser experiments, which deal with targets of a spatial scale of ∼100 μm and occur at a time scale of a few nanoseconds, can reproduce phenomena occurring at spatial scales of a million or more kilometers and time scales from hours to many years. Quite remarkably, in a number of cases there exists a broad hydrodynamic similarity (sometimes called the "Euler similarity") that allows a direct scaling of laboratory results to astrophysical phenomena. A discussion is presented of the details of the Euler similarity related to the presence of shocks and to a special case of a strong drive. Constraints stemming from the possible development of small-scale turbulence are analyzed. The case of a gas with a spatially varying polytropic index is discussed. A possibility of scaled simulations of ablation front dynamics is one more topic covered in this paper. It is shown that, with some additional constraints, a simple similarity exists. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Rayleigh–Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wavelengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. Presented here are the results of a series of laser experiments designed to measure the RT dispersion curve for a radiatively driven sample. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 μm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths ≥20 μm experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a two-dimensional radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. Due to the influence of the rippled shock transit phase of the experiment and ambiguities associated with directly extracting the physical amplitude of the perturbations at the ablation front from the simulations, direct comparison to the ablation front RT theory of Betti et al. [Phys. Plasmas 5, 1446 (1998)], was difficult. Instead, a numerical "experiment" was constructed that minimized the influence of the shock and this was compared to the Betti model showing quite good agreement. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments were performed on the Nova laser [E. M. Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)], using indirectly driven capsules mounted in cylindrical gold hohlraums, to measure the Rayleigh–Taylor growth at the ablation front by time-resolved radiography. Modulations were preformed on the surface of Ge-doped plastic capsules. With initial modulation amplitude of 2–2.5 μm, growth factors of about six in optical depth were seen, in agreement with simulations using the radiation hydrocode FCI2 [G. Schurtz, La fusion thermonucleaire inertielle par laser, edited by R. Dautray et al. (Eyrolles, Paris, 1994), Vol. 2]. With initial modulation amplitude of 0.5 μm and a longer drive, growth factors of about 100–150 in optical depth were seen. Comparable planar experiments showed growth factors of about 40 in optical depth. Analytical models predict the observed growth factors. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new method for performing compressible hydrodynamic instability experiments using high-power lasers is presented. A plasma piston is created by supersonically heating a low-density carbon based foam with x-rays from a gold hohlraum heated to ∼200 eV by a ∼1 ns Nova laser pulse [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)]. The piston causes an almost shockless acceleration of a thin, higher-density payload consisting of a layer of gold, initially 1/2 μm thick, supported on 10 μm of solid plastic, at ∼45 μm/ns2. The payload is also heated by hohlraum x-rays to in excess of 150 eV so that the Au layer expands to ∼20 μm prior to the onset of instability growth. The Atwood number between foam and Au is ∼0.7. Rayleigh–Taylor instability, seeded by the random fibrous structure of the foam, causes a turbulent mixing region with a Reynolds number 〉105 to develop between piston and Au. The macroscopic width of the mixing region was inferred from the change in Au layer width, which was recorded via time resolved x-radiography. The mix width thus inferred is demonstrated to depend on the magnitude of the initial foam seed. For a small initial seed, the bubble front in the turbulent mixing region is estimated indirectly to grow as ∼0.036±0.19 [∫(square root of)(Ag)dt]2 which would imply for a constant acceleration 0.036±0.019 Agt2. More direct measurement techniques must be developed in larger scale experiments to remove potential complicating factors and reduce the error bar to a level that would permit the measurements to discriminate between various theories and models of turbulent mixing. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In direct drive inertial confinement fusion, the residual speckle pattern remaining after beam smoothing plays an important role in the seeding of instabilities at the ablation front. An x-ray laser is used as an extreme ultraviolet backlighter to characterize the imprinted modulation in thin foils for smoothing by random phase plate and by spectral dispersion for both 0.35 and 0.53 μm irradiation, and by induced spatial incoherence for 0.53 μm irradiation. Measurements of the imprinted modulation due to a single optical mode generated by two beam interference, and modification of the imprint with a superposed smooth irradiation to study time dependence of the imprinting process are demonstrated. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In studying complex astrophysical phenomena such as supernovae, one does not have the luxury of setting up clean, well-controlled experiments in the universe to test the physics of current models and theories. Consequently, creating a surrogate environment to serve as an experimental astrophysics testbed would be highly beneficial. The existence of highly sophisticated, modern research lasers, developed largely as a result of the world-wide effort in inertial confinement fusion, opens a new potential for creating just such an experimental testbed utilizing well-controlled, well-diagnosed laser-produced plasmas. Two areas of physics critical to an understanding of supernovae are discussed that are amenable to supporting research on large lasers: (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 3128-3130 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Fuel ion temperatures have been deduced for a series of implosions of defiled capsules by measuring the thermally broadened neutron time-of-flight signals at 10 and 20 m from the target. Typical temperatures were around 1 keV, and the corresponding thermal broadening was comparable to or less than the time response of the detectors. Under these conditions, error minimization is crucial, and we find that the location of the detector and the analysis technique are important. An optimum location exists, but is very sensitive to the yield of the implosion and to the detector response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 3131-3133 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Fuel ion temperatures for laser-driven, inertial confinement fusion targets are often determined by neutron time-of-flight (TOF) techniques. The error in the temperature measurement is a minimum at a target-to-detector distance that depends on both target and detector characteristics. The error is dominated by the detector response at shorter distances and by the number of detected neutrons at larger distances. We develop equations that relate the temperature error to the target ion temperature, the number of neutrons detected, target-to-detector distance, and the detector impulse response; and present sample calculations of error for D-D and D-T plasmas observed by typical Nova neutron TOF detectors. The detector placement is important for minimizing temperature error for target yield below 1010 neutrons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...