Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 155 (1979), S. 333-345 
    ISSN: 1432-0568
    Keywords: Lipofuscin ; Cerebellar cortex ; Ultrastructure ; Senescent rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The ultrastructure of autofluorescent, PAS-positive lipofuscin in Purkinje, granule, Golgi epithelial, basket and stellate, microglial and perivascular cells in the cerebellar cortex of senescent rats is described. The membrane-bounded pigment is composed of three elements: 1) electron-lucent homogeneous droplets, 2) a granular matrix and 3) intensely osmiophilic patches. The proportions of these three components vary between cell types and one can grossly differentiate a neuronal and a glial lipofuscin. The lipofuscin granules of stellate and perivscular cells are different from lipofuscin of other cerebellar neurons and glia. It can be concluded from these morphological observations that each cerebellar cell type has its distinct lipofuscin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 161 (1981), S. 453-464 
    ISSN: 1432-0568
    Keywords: Lipofuscin ; Purkinje cells ; Pigmentarchitectonics ; Senile rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of lipofuscin in the perikarya of Purkinje cells of vermal and hemispheric lobules has been determined quantitatively in 7 rats, 30–38 months old, by the point-counting method. On the basis of morphologically and statistically significant differences a pigmentarchitectonics of the cerebellar cortex is established. The Purkinje cells of lobule VIa (Larsell 1952) are extremely lipofuscin-rich. The Purkinje cells of the hemispheres, lobules V, VI b+c and VII contain considerable amounts of a finely granular lipofuscin, the Purkinje cells of lobules I–III and VIII–IX a a globular type of lipofuscin. The Purkinje cells of sublobule XI d c and X are lipofuscin-poor cells. Three types of lipofuscin have been identified in the light microscope.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 168 (1983), S. 361-370 
    ISSN: 1432-0568
    Keywords: Cerebellar cortex ; Albino rats ; Quantitative anatomy-Purkinje cells ; Spines ; Parallel fiber synapses ; Regional differences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Volume densities, surface densities, length densities and numerical densities of several structures in the neocerebellar lobule VIa and the archicerebellar lobule X of six-month old male Han: WIST-rats were estimated by point- and intersection-counting. The volume densities of dendritic spines (ca. 6.5%), parallel fiber varicosities (ca. 25%) and processes of Bergmann glial cells (ca. 21%) were similar in the upper third of the molecular layer of lobule VIa and X respectively. The surface density of the spine membrane was 31 mm2/mm3 in lobule X and 32 mm2/mm3 in lobule VIa (p=0.4375; paired Pitman permutation test). The length density of dendritic spines varied from 793 meters/mm3 in lobule VIa to 675 meters/mm3 in lobule X (p=0.0938). The mean caliper diameter of parallel fiber-Purkinje cell synapses was estimated by Mayhew's (1979) method and calculated by Cruz-Orive's (1983) computer program. Both tests yielded nearly identical numerical densities of parallel fiber synapses in lobule VIa (6.558x108/mm3) and in lobule X (4.892x108/mm3; p=0.0313). The area of synaptic apposition relative to the postsynaptic dendritic spine surface was higher in lobule VIa (13.3%) than in lobule X (10.4%; p=0.0313). The data provide electron microscopic evidence of regional differences in spine morphology, which together with different spiny branchlet diameter and numerical density of parallel fiber synapses may be of importance in Purkinje cell physiology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0533
    Keywords: Key words Huntington's disease ; Human cerebral cortex ; Striatum ; Neurone number ; Stereology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The total cortical and striatal neurone and glial numbers were estimated in five cases of Huntington's disease (three males, two females) and five age- and sex-matched control cases. Serial 500-μm-thick gallocyanin-stained frontal sections through the left hemisphere were analysed using Cavalieri's principle for volume and the optical disector for cell density estimations. The average cortical neurone number of five controls (mean age 53±13 years, range 36 – 72 years) was 5.97×109±320×106, the average number of small striatal neurones was 82×106±15.8×106. The left striatum (caudatum, putamen, and accumbens) contained a mean of 273×106±53×106 glial cells (oligodendrocytes, astrocytes and unclassifiable glial profiles). The mean cortical neurone number in Huntington's disease patients (mean age 49±14 years, range 36 – 75 years) was diminished by about 33  % to 3.99×109±218×106 nerve cells (P≤ 0.012, Mann-Whitney U-test). The mean number of small striatal neurones decreased tremendously to 9.72 × 106± 3.64×106 ( – 88  %). The decrease in total glial cells was less pronounced (193 × 106±26 × 106) but the mean glial index, the numerical ratio of glial cells per neurone, increased from 3.35 to 22.59 in Huntington's disease. Qualitatively, neuronal loss was most pronounced in supragranular layers of primary sensory areas (Brodmann's areae 3,1,2; area 17, area 41). Layer IIIc pyramidal cells were preferentially lost in association areas of the temporal, frontal, and parietal lobes, whereas spared layer IV granule cells formed a conspicuous band between layer III and V in these fields. Methodological issues are discussed in context with previous investigations and similarities and differences of laminar and lobar nerve cell loss in Huntington's disease are compared with nerve cell degeneration in other neuropsychiatric diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 151 (1977), S. 201-218 
    ISSN: 1432-0568
    Keywords: Cerebellum ; Albino rat ; Ontogeny ; Quantitative anatomy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The quantitative postnatal changes of the cerebella of 65 Wistar rats aged 2–120 days have been examined. The cerebellar volume increases in two phases: The first phase lasts from birth to the seventh postnatal week. The second phase begins ten weeks post partum and lasts for a longer period than the first phase. The cerebellar surface increases continuously from birth to the end of the seventh week. The volume of the external granular layer is maximal when the organ grows rapidly. The external granular layer has nearly disappeared 24 days after birth; the volume of the internal granular layer is maximal at this time. Later on, the volume and the width of the internal granular layer decrease. Myelinization of the cerebellar fibers and growth of the molecular layer run parallel to this decrease. The second late, but protracted growth of the cerebellum, ten weeks after birth, is due to an increase of the molecular and medullary layer. These findigns are in good accord with histological, histochemical, and ultrastructural observations of other authors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-0533
    Keywords: Huntington's disease ; Human cerebral cortex ; Striatum ; Neurone number ; Stereology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The total cortical and striatal neurone and glial numbers were estimated in five cases of Huntington's disease (three males, two females) and five age-and sex-matched control cases. Serial 500-μm-thick gallocyanin-stained frontal sections through the left hemisphere were analysed using Cavalieri's principle for volume and the optical disector for cell density estimations. The average cortical neurone number of five controls (mean age 53±13 years, range 36–72 years) was 5.97×109±320×106, the average number of small striatal neurones was 82×106±15.8×106. The left striatum (caudatum, putamen, and accumbens) contained a mean of 273×106±53×106 glial cells (oligodendrocytes, astrocytes and unclassifiable glial profiles). The mean cortical neurone number in Huntington's disease patients (mean age 49±14 years, range 36–75 years) was diminished by about 33% to 3.99×109±218×106 nerve cells (P≦0.012, Mann-Whitney U-test). The mean number of small striatal neurones decreased tremendously to 9.72×106±3.64×106 (−88%). The decrease in total glial cells was less pronounced (193×106±26×106) but the mean glial index, the numerical ratio of glial cells per neurone, increased from 3.35 to 22.59 in Huntington's disease. Qualitatively, neuronal loss was most pronounced in supragranular layers of primary sensory areas (Brodmann's areae 3,1,2; area 17, area 41). Layer IIIc pyramidal cells were preferentially lost in association areas of the temporal, frontal, and parietal lobes, whereas spared layer IV granule cells formed a conspicuous band between layer III and V in these fields. Methodological issues are discussed in context with previous investigations and similarities and differences of laminar and lobar nerve cell loss in Huntington's disease are compared with nerve cell degeneration in other neuropsychiatric diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-0533
    Keywords: Key words Huntington's disease ; Human brain ; Thalamus ; Nuclei centromedianus-parafascicularis ; Neurone number
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The centromedian-parafascicular complex represents a nodal point in the neuronal loop comprising striatum – globulus pallidus – thalamus – striatum. Striatal neurone degeneration is a hallmark in Huntington's disease and we were interested in estimating total neurone and glial number in this thalamic nuclear complex. Serial 500-μm-thick gallocyanin-stained frontal sections of the left hemisphere from six cases of Huntington's disease patients (three females, three males) and six age- and sex-matched controls were investigated applying Cavalieri's principle and the optical disector. Mean neurone number in the controls was 646,952 ± 129,668 cells versus 291,763 ± 60,122 in Huntington's disease patients (Mann-Whitney U-test, P 〈 0.001). Total glial cell number (astrocytes, oligodendrocytes, microglia, and unclassifiable glial profiles) was higher in controls with 9,544,191 ± 3,028,944 versus 6,961,989 ± 2,241,543 in Huntington's disease patients (Mann-Whitney U-test, P 〈 0.021). Considerable increase of fibrous astroglia within the centromedian-parafascicular complex could be observed after Gallyas' impregnation. Most probably this cell type enhanced the numerical ratio between glial number and neurone number (glial index: Huntington's disease patients = 24.4 ± 8.1; controls = 15.0 ± 5.2; Mann-Whitney U-test, P 〈 0.013). The neurone number in the centromedian-parafascicular complex correlated negatively, although statistically not significantly, with the striatal neurone number. This lack of correlation between an 80% neuronal loss in the striatum and a 55% neurone loss in the centromedian-parafascicular complex points to viable neuronal circuits connecting the centromedian-parafascicular complex with cortical and subcortical regions that are less affected in Huntington's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-0533
    Keywords: Key words Human brain ; Thalamus ; Myeloarchitectonic ; Nerve cell number ; Optical disector
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We estimated the total neurone number, glial number, and glial index (ratio glial cells/neurone) in the thalamic mediodorsal nucleus (MD) in seven patients suffering from Huntington’s disease (HD; four males, three females, mean age 52.4 ± 13.6 years) and age- and sex-matched controls (four males, three females, mean age 53.6 ± 12.1 years) by means of a stereological protocol. The mean total neurone number (NT¯) in the MD of controls was 2,985,188 ± 174,710, the mean glial number (GT¯; astrocytes, oligodendrocytes) 21,785,008 ± 2,986,678, and the glial index 7.29 ± 0.88. In HD, the average neurone number was decreased by 23.8% to 2,275,321 ± 247,162 (Mann-Whitney U-test P 〈 0.05), the mean glial number by 29.7 % to 15,318,895 ± 1,722,524 (Mann-Whitney U-test P 〈 0.05), the glial index was slightly reduced to 6.81 ± 1.06. Gallyas’ impregnation for the demonstration of fibrous astroglia gave strongly positive results in all cases with HD and negative results in the controls. The morpho-functional correlation of the results is complicated because individual variability, presence of segregated and parallel neuronal circuits, and plasticity of the adult human CNS must be considered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 168 (1983), S. 101-116 
    ISSN: 1432-0568
    Keywords: Capillaries ; Blood-brain barrier ; Quantitative anatomy ; Cerebellar cortex ; Senile rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Ultrastructural changes including reduced electron density, reduction in polysomes and cisternae of rough endoplasmic reticulum occur in the cytoplasm of endothelial cells and pericytes in the cerebellar cortex of senile virgin female Han: WIST-rats in comparison to 3-month old virgin rats. Processes of pericytes cover less of the capillary surface in the cerebellar cortex of senile rats; moreover, arithmetic and harmonic mean thickness of the endothelium and relative volume of mitochondria in endothelial cells and pericytes are reduced, whereas the luminal diameter of the capillaries, harmonic and arithmetic mean thickness of pericytes and their processes and of the basal laminae between endothelial cells and astrocytes (abbreviated BAL 1), pericytes and astrocytes (BAL 2) and endothelial cells and pericytes (BAL 3) increase. The increase in harmonic mean thickness of the basal laminae is statistically significant (α≦0.05) and compensates for a decrease in thickness of capillary endothelium. Consequently, the total barrier mass and thickness of cerebellar cortical capillaries in senile animals is higher than in young individuals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-0568
    Keywords: Human entorhinal area ; Ageing ; Lateralitity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The total nerve cell numbers in the right and in the left human entorhinal areas have been calculated by volume estimations with the Cavalieri principle and by cell density determinations with the optical disector. Thick gallocyanin-stained serial frozen sections through the parahippocampal gyrus of 22 human subjects (10 female, 12 male) ranging from 18 to 86 years were analysed. The laminar composition of gallocyanin (Nissl)-stained sections could easily be compared with Braak's (1972, 1980) pigmentoarchitectonic study, and Braak's nomenclature of the entorhinal laminas was adopted. Cellsparse laminae dissecantes can more clearly be distinguished in Nissl than in aldehydefuchsin preparations. These cell-poor dissecantes, lamina dissecans externa (dis-ext), lamina dissecans 1 (dis-1) and lamina dissecans 2 (dis-2), were excluded from nerve cell number determinations. An exact delineation of the entorhinal area is indispensable for any kind of quantitative investigation. We have defined the entorhinal area by the presence of pre-alpha cell clusters and the deeper layers of lamina principalis externa (pre-beta and gamma) separated from lamina principalis interna (pri) by lamina dissecans 1 (dis-1). The human entorhinal area is quantitatively characterized by a left-sided (asymmetric) higher pre-alpha cell number and an age-related nerve cell loss in pre as well as pri layers. At variance with other CNS cortical and subcortical structures, the neuronal number of the entorhinal area appears to decrease continuously from the earliest stages analysed, although a secular trend has to be considered. The asymmetry in pre-alpha cell number is discussed in the context of higher human mental capabilities, especially language.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...