Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 1763-1771 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of strain-induced band-gap modulation has been studied in a GaAs/AlGaAs multiple-quantum-well structure with the wells located at various depths in the structure. The energy change in the quantum wells was calculated based on simple elasticity theory and measured using photoluminescence on the structure where a thin-film stressor array was deposited. Metallic thin-film stressors were made by conventional thin-film deposition techniques followed by photolithography. It was found that the elasticity theory describes the energy changes reasonably well in comparison with the experimental results. For stressor layers that react with the heterojunction structure, the situation was more complex and requires more detailed analysis. Based on the calculated and experimental results it appears possible to fabricate quantum wire with lateral dimensions of less than 100 nm using thin-film technology and e-beam lithography. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the use of thin film technology to introduce controllable and thermally stable stress into semiconductor heterostructures. Two simple schemes are used. The first scheme is to use interfacial reactions between a metal and the substrate, such as Ni, Co, Pd, and Pt on GaAs/AlGaAs. The induced stress in the structure is reproducible and controllable because the volumetric change for a given reaction is fixed, as long as the deposited film is fully reacted to form a compound. The stability of the stress depends on the stability of the compound. In the case of Ni and Co on GaAs/AlGaAs, the induced stress is thermally stable up to 600 °C. Evaporated films and reacted films are usually under tension. The second scheme is to use rf sputtered W or WNi alloy films where W or WNi is sputtered onto a negative dc biased substrate. This scheme effectively provides highly compressed films. The thermal stability depends on the concentration of Ni in the WNi alloy. Using the two schemes above, we have fabricated low-loss (∼1 dB/cm at 1.52 μm wavelength) photoelastic waveguides in GaAs/AlGaAs heterostructures, and explored the interrelationship between the photoelastic waveguide characteristics and the stress. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 1585-1591 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Erbium-doped GaAs layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 1017–1018 cm−3 was achieved using a relatively low source temperature of 90 °C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in "as-grown'' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er3+ luminescence at 1.54 μm was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration. The compensation is proposed to arise from deep centers associated with Er which are responsible for a broad emission band near 0.90 μm present in the photoluminescence spectra of GaAs:Si, Er films.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 3519-3521 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have achieved spatially resolved photoluminescence from GaN films using a near-field scanning optical microscope (NSOM). GaN films grown by hydride vapor phase epitaxy (HVPE) and metal-organic vapor phase epitaxy (MOVPE) on sapphire substrates have been studied. We have performed spatial scans of topography, band edge, and yellow luminescence signals. Atomic force microscopy measurements were also made and compared with the NSOM topography. We have found spatial variations in photoluminescence characteristics at the submicron scale for both HVPE and MOVPE GaN. The observed enhancement of yellow luminescence at multiatomic step edges on the HVPE GaN surface suggests that the yellow luminescence is associated with chemical impurities incorporated during the growth of GaN films. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 650-654 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin Ni films on GaN were annealed at temperatures between 400 and 900 °C in N2, Ar, and forming gas and were analyzed using glancing angle x-ray diffraction and Auger depth profiling. The first indication of an interfacial reaction was found after an anneal at 600 °C for 1 h, after which Ga was observed to be dissolved in the face-centered cubic Ni film. The extent of dissolution increased with continued annealing. After annealing at 750 °C for 1 hr in either N2 or Ar, greater intermixing occurred. The reaction product was either Ni3Ga or face-centered cubic Ni with dissolved Ga. Annealing at 900 °C resulted in the formation of the B2 phase NiGa. It was clear from Auger depth profiles that the reacted film contained significantly more Ga than N and that N2 gas was released to the annealing environment, even when the samples were annealed in N2 gas at 1 atm. Thus, a trend of increasing Ga content in the reacted films was observed with increasing temperature. The observed reactions are consistent with the thermodynamics of the Ni–Ga–N system. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 1270-1272 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Atomic force microscopy has been used to investigate the influence of controlled oxygen incorporation on the surface morphology of GaAs films grown by metalorganic vapor phase epitaxy (MOVPE). Oxygen influences the periodic morphology observed in GaAs surfaces, with concentrations about 1018 cm−3 leading to a breakup of the periodicity. To account for these observations, we propose a model in which oxygen preferentially attaches at steps with a subsequent reduction in step mobility and a concomitant increase in the surface roughness. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 963-965 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High quality Al0.15Ga0.85N/GaN heterostructures have been fabricated on 6H–SiC and sapphire substrates by metalorganic vapor phase epitaxy (MOVPE). A temperature independent mobility, indicative of the presence of a two-dimensional electron gas (2DEG), was observed in all samples below 80 K. The highest low temperature 2DEG mobility, 7500 cm2/V s, was measured in AlGaN/GaN grown on 6H–SiC; the sheet carrier density was 6×1012 cm−2. Strong, well resolved, Shubnikov–de Haas oscillations were observed in fields as low as 3 T and persisted to temperatures as high as 15 K. Hall effect measurements also revealed the presence of well-defined plateaus in the Hall resistance. The high quality 2DEG properties of the AlGaN/GaN heterostructures grown on 6H–SiC are attributed to the absence of significant parallel conduction paths in the material. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 25-27 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: GaN photoconductive detectors were fabricated on three substrates: sapphire, SiC, and GaN-on-sapphire substrates. The undoped GaN was deposited on each substrate by metalorganic vapor phase epitaxy. The structural properties, as measured by transmission electron microscopy, x-ray diffraction, and atomic force microscopy, of the layers grown on GaN-on-sapphire and SiC were superior to those of the layers grown on sapphire. A corresponding improvement in optical response and sharpness of optical response of the photoconductive detectors was observed with improved material quality. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 368-374 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The photoluminescence properties of metal-organic chemical vapor deposition GaAs:Er were investigated as a function of temperature and applied hydrostatic pressure. The 4I13/2→4I15/2Er3+emission energy was largely independent of pressures up to 56 kbar and temperatures between 12 and 300 K. Furthermore, no significant change in the low temperature emission intensity was observed at pressures up to and beyond the Γ-X crossover at ∼41 kbar. In contrast, AlxGa1−xAs:Er alloying studies have shown a strong increase in intensity near the Γ-X crossover at x∼0.4. These results suggest that the enhancement is most likely due to a chemical effect related to the presence of Al, such as residual oxygen incorporation, rather than a band structure effect related to the indirect band gap or larger band gap energy. Modeling the temperature dependence of the 1.54 μm Er3+ emission intensity and lifetime at ambient pressure suggested two dominant quenching mechanisms. At temperatures below approximately 150 K, thermal quenching is dominated by a ∼13 meV activation energy process which prevents Er3+ excitation, reducing the intensity, but does not affect the Er3+ ion once it is excited, leaving the lifetime unchanged. At higher temperatures, thermal quenching is governed by a ∼115 meV activation energy process which deactivates the excited Er3+ ion, quenching both the intensity and lifetime. At 42 kbar, the low activation energy process was largely unaffected, whereas the higher activation energy process was significantly reduced. These processes are proposed to be thermal dissociation of the Er-bound exciton, and energy back transfer, respectively. A model is presented in which the Er-related electron trap shifts up in energy at higher pressure, increasing the activation energy to back transfer, but not affecting thermal dissociation of the bound exciton through hole emission. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...