Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 9888-9897 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Irradiation of a Ru(001) surface covered with CO using intense femtosecond laser pulses (800 nm, 130 fs) leads to desorption of CO with a nonlinear dependence of the yield on the absorbed fluence (100–380 J/m2). Two-pulse correlation measurements reveal a response time of 20 ps (FWHM). The lack of an isotope effect together with the strong rise of the phonon temperature (2500 K) and the specific electronic structure of the adsorbate–substrate system strongly indicate that coupling to phonons is dominant. The experimental findings can be well reproduced within a friction-coupled heat bath model. Yet, pronounced dynamical cooling in desorption, found in the fluence-dependence of the translational energy, and in a non-Arrhenius behavior of the desorption probability reflect pronounced deviations from thermal equilibrium during desorption taking place on such a short time scale. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 2841-2845 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: ZnS nanoparticles were prepared by chemical precipitation of Zn2+ with sulfur ions in aqueous solution. The ultraviolet-excited samples reveal detailed structure in the luminescence spectra. A doublet pattern observed in the long wavelength region is attributed to the coexistence of the two crystalline forms in ZnS particles. The visible luminescent radiation at 590.1 nm is due to Mn impurities. The dominant emission band at short wavelengths exhibits a quadruple fine structure with peaks located at 416.1, 423.9, 430.1, and 437.8 nm which are identified with optical transitions arising from vacancy and interstitial sites for both Zn and S atoms. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...