Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 8146-8155 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a study of the bonding of formate (HCOO) and acetate (CH3COO) chemisorbed on Cu(110) using core level spectroscopies in combination with theoretical calculations. For the first time, we apply x-ray emission spectroscopy (XES) to these systems. When XES is used in conjunction with x-ray absorption spectroscopy (XAS) and ab initio calculations, new information about the electronic interaction in the adsorbate–substrate system is provided. In particular, we have used the azimuthal orientation of the COO–surface bond on the (110) surface, to make a complete partition into x, y, and z orbital contributions. The surface bond is found to be predominantly ionic. For the case of adsorbed formate, the covalent bonding is dominated by 6a1/7a1, (σ)-type, frontier orbitals, interacting with the Cu valence band. The resulting hybrid orbitals form a distribution of states that cross the Fermi level. The contribution from adsorbate π-type orbitals is small. The chemical bond formation of adsorbed acetate is very similar to that of formate. In addition, states with metal character have been identified for the outermost CH3-group of acetate. These are delocalized states of mainly local σ-character. The spectral features due to states of local π-character in the adsorbed acetate are well described within the framework of hyperconjugation. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 4880-4890 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a study of a monolayer of ammonia (NH3) adsorbed on Cu(110) using core level spectroscopies in combination with ab initio calculations based on density functional theory. In particular, x-ray emission spectroscopy has been applied, providing an unsurpassed view of the electronic structure of NH3 upon adsorption. The saturated NH3 monolayer, aitch-theta∼0.4 ML, is found to induce strong adsorbate–adsorbate interaction, causing the molecules to tilt on the surface. Based on the angular distribution of the x-ray emission (XE) spectra, we have been able to estimate a mean tilt angle from the surface normal of 40°–45° for the saturated monolayer; the accompanying theoretical calculations for up to three NH3 molecules on a Cu21 all-electron cluster model support a tilted structure due to adsorbate–adsorbate dipole, and possibly hydrogen bonding, interactions. Since the creation of a core hole on the nitrogen atom site in the intermediate state of the XE process does not affect the symmetry of the molecule, a separation of valence electronic states having mainly e symmetry (N 2pxy) and a1 symmetry (N 2pz) has been achieved using angle resolved XE measurements. In addition to the electronic states of free NH3, evidence of new, substrate induced, states has been found, interpreted as ammonia 3a1/4a1-Cu 3d valence band hybrids. It is found that back donation into the previously unoccupied ammonia 4a1 orbital, and a simultaneous 3a1 donation into the substrate plays an important role in the surface chemical bond. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0630
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: 3 threshold. At threshold, the emission feature changes character and after a rather narrow transition region it appears at constant emission energy instead. Clear signatures of interference between the direct photoemission and autoionization channels are identified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0630
    Keywords: PACS: 78.70.En; 73.20.Hb; 85.65.Pa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: 2 and CO on Ni(100), benzene on Ni(100) and Cu(110), and glycine adsorbed on Cu(110). New types of molecular states are observed which are directly related to the surface chemical bond. The long-accepted Blyholder model which is based on a frontier orbital concept cannot explain our results for N2 and CO chemisorption. We find it necessary to offer a new picture where changes in the whole molecular orbital framework have to be considered. We show that both π and σ type interactions are important in describing the bonding in benzene to metal surfaces. The future prospect is illustrated by the adsorption of the simplest amino acid, glycine, on Cu(110). The adsorbate has four different atomic centers where X-ray emission spectra are obtained, providing a unique view of the local electronic structure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...