Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 8146-8155 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a study of the bonding of formate (HCOO) and acetate (CH3COO) chemisorbed on Cu(110) using core level spectroscopies in combination with theoretical calculations. For the first time, we apply x-ray emission spectroscopy (XES) to these systems. When XES is used in conjunction with x-ray absorption spectroscopy (XAS) and ab initio calculations, new information about the electronic interaction in the adsorbate–substrate system is provided. In particular, we have used the azimuthal orientation of the COO–surface bond on the (110) surface, to make a complete partition into x, y, and z orbital contributions. The surface bond is found to be predominantly ionic. For the case of adsorbed formate, the covalent bonding is dominated by 6a1/7a1, (σ)-type, frontier orbitals, interacting with the Cu valence band. The resulting hybrid orbitals form a distribution of states that cross the Fermi level. The contribution from adsorbate π-type orbitals is small. The chemical bond formation of adsorbed acetate is very similar to that of formate. In addition, states with metal character have been identified for the outermost CH3-group of acetate. These are delocalized states of mainly local σ-character. The spectral features due to states of local π-character in the adsorbed acetate are well described within the framework of hyperconjugation. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...