Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 1859-1862 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The absence of the line-of-sight restriction makes plasma immersion ion implantation an excellent interior surface treatment technique. In our experiments, we implanted both the outside and inside surfaces of a set of hollow cylindrical samples with and without a grounded conductive electrode positioned along the center of the bores to evaluate the impact energy as well as dose uniformity along the specimens. Our experimental results show that the use of the coaxial electrode increases the impact energy by 43% and retained dose by 71%. The nonuniformity is 20% to 30% and is worse with larger bore length. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 4431-4434 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temporal evolution of the plasma sheath in a small cylindrical bore with an auxiliary electrode is calculated for zero-rise-time voltage pulses. The ion density, flux, dose, ion energy distribu-tion, and electric field are determined by solving Poisson's equation and the equations of ion motion and continuity using finite difference methods. Our results indicate that the implantation time is about halved and slightly more than 50% of the ions possess impact energy higher than the maximum achieved when an auxiliary electrode is absent. The resulting ion flux, ion current, as well as ion energy distribution, are also determined. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 69 (1998), S. 1495-1498 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The high voltage and electromagnetic field environment poses a big challenge to a control system for plasma immersion ion implantation (PIII). The automation process must be immune to electric field interference produced by the high voltage power supply, modulator, radio-frequency or microwave plasma generator, MEVVA plasma sources, and so on. We have recently designed and installed a distributed control system, PIIIDCS, to automate the operation of our PIII facility. Programmable logic controllers are used as the field control stations because of their good anti-interference ability and good real time response. A DH-485 network is used as the communication link between the field controllers and the management station in order to improve the robustness and reliability of the system. The newly developed interface is designed to work in a graphic mode in Microsoft Windows 95. Test runs have shown that the system is reliable, flexible, and easy to operate. The development of this novel control system will expedite the development of commercial PIII instrumentation. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 44-49 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model utilizing cold, unmagnetized, and collisionless fluid ions as well as Boltzmann electrons is used to comprehensively investigate the sheath expansion into a translationally invariant large bore in the presence of an auxiliary electrode during plasma immersion ion implantation (PIII) of a cylindrical bore sample. The governing equation of ion continuity, ion motion, and Poisson's equation are solved by using a numerical finite difference method for different cylindrical bore radii, auxiliary electrode radii, and voltage rise times. The ion density and ion impact energy at the cylindrical inner surface, as well as the ion energy distribution, maximum ion impact energy, and average ion impact energy for the various cases are obtained. Our results show a dramatic improvement in the impact energy when an auxiliary electrode is used and the recommended normalized auxiliary electrode radius is in the range of 0.1–0.3. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 1035-1037 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temporal evolution of the plasma sheath in a small cylindrical bore in the presence of an auxiliary electrode is determined for different electrode radii. The ion density, velocity, flux, dose, ion energy distribution, and average impact energy are calculated by solving Poisson's Equation and the equations of ion motion and continuity using finite difference methods. The particle-in-cell method is also used to confirm the validity of the data. Our results indicate that more ions will attain high impact energy when the auxiliary electrode radius is increased, but the dose will decrease. Our results suggest that the normalized auxiliary electrode radius should range from 0.10 to 0.30 in order to maximize the dose and produce a larger number of ions with higher impact energy. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...