Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present the materials growth and properties of both epitaxial and amorphous films of Gd2O3 (κ=14) and Y2O3 (κ=18) as the alternative gate dielectrics for Si. The rare earth oxide films were prepared by ultrahigh vacuum vapor deposition from an oxide source. The use of vicinal Si (100) substrates is key to the growth of (110) oriented, single domain films in the Mn2O3 structure. Compared to SiO2 gate oxide, the crystalline Gd2O3 and Y2O3 oxide films show a reduction of electrical leakage at 1 V by four orders of magnitude over an equivalent oxide thickness range of 10–20 Å. The leakage of amorphous Y2O3 films is about six orders of magnitude better than SiO2 due to a smooth morphology and abrupt interface with Si. The absence of SiO2 segregation at the dielectric/Si interface is established from infrared absorption spectroscopy and scanning transmission electron microscopy. The amorphous Gd2O3 and Y2O3 films withstand the high temperature anneals to 850 °C and remain electrically and chemically intact. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 2447-2449 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ultrathin Y2O3 films were electron beam evaporated in an ultrahigh vacuum onto Si(100) and investigated by high-resolution medium energy ion scattering. Selected films were capped in situ with amorphous Si. Uncapped films that were exposed to air prior to analysis contained excess oxygen compared to a stoichiometric Y2O3 film, and showed a 6–8 Å interfacial layer. Si uptake from the substrate occurred in these films after a 700 °C vacuum anneal, presumably by reacting with the excess oxygen. Si-capped Y2O3 films on the other hand were stoichiometric, and the substrate interface was sharp (≤2 Å), even after 900 °C vacuum anneals. No change was seen at the Y2O3 capping layer interface until ≥800 °C for vacuum anneals. These measurements indicate that control of the interface composition is not possible after exposure of ultrathin Y2O3 films to air. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...