Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 84 (1986), S. 31-40 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ontogenetical development of the subcommissural organ (SCO) was investigated in chick embryos collected daily from the 1st to the 21st day of incubation. Some duck embryos, and adult chickens and ducks were also studied. Immunocytochemistry using an anti-Reissner's fiber (RF) serum as the primary antibody was the principal method used. In the chick embryos the events occurring at different days of incubation were: day 3 morphologically undifferentiated cells in the dorsal diencephalon displayed immunoreactive material (IRM); days 4 to 6 immunoreactive cells proliferated, formed a multilayered structure and developed processes which traversed the growing posterior commissure and ended at the brain surface; day 7 i) blood vessels penetrated the SCO, ii) scarce hypendymal cells appeared, iii) the first signs of ventricular release of IRM were noticed, iv) appearance of IRM bound to cells of the floor of the Sylvius aqueduct; day 7 to 10 the number of apical granules and amount of extracellular IRM increased progressively; day 11 RF was observed along the Sylvian aqueduct; day 12 RF was present in the lumbar spinal cord; day 13 IRM on the aqueductal floor disappeared; days 10 to 21 i) hypendymal cells proliferated, developed processes and migrated dorsally, ii) ependymal processes elongated and their endings covered the external limiting membrane. In adult specimens the ependymal cells lacked basal processes and the external membrane was contacted by hypendymal cells. The duck SCO appears to follow a similar pattern of development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Ten monoclonal antibodies (Mabs) against glycoproteins of the bovine Reissner's fiber (RF) have been used in a structural and ultrastructural immunocyto-chemical investigation of the bovine subcommissural organ (SCO) and RF. The SCO of other vertebrate species has also been studied. For comparison, polyclonal antibodies against bovine RF (AFRU) were used. The SCO and RF of ox, pig and dogfish and the SCO of dog, rabbit, rat and frog were submitted to light-microscopic immunocytochemistry using AFRU and Mabs. Postembedding ultrastructural immunocytochemistry was applied to sections of bovine SCO using AFRU and Mabs. Bovine SCO consists of ependymal and hypendymal cell layers, the latter being arranged as cell strands across the posterior commissure, or as hypendymal rosette-like structures. All cytoplasmic regions of the ependymal and hypendymal cells were strongly stained with AFRU. Six Mabs showed the same staining pattern as AFRU, one Mab stained RF strongly and SCO weakly, two Mabs stained RF but not SCO, and, finally, one Mab (3B1) exclusively stained the apices of the ependymal and hypendymal cells. All Mabs recognized the SCO and RF of the pig. Two Mabs bound to the SCO of the dog. One Mab stained the SCO of the rabbit and another the SCO of the rat. The SCO of frog and dogfish were totally negative. Bovine SCO stained with AFRU, showed label in the rough endoplasmic reticulum (RER) and the secretory granules (SG) of the ependymal and hypendymal cells. The former, in the form of parallel cisternae, reticulum or concentric rings, was seen throughout all cytoplasmic regions. SG were abundant in the apical pole of the ependymal and hypendymal cells. Only one Mab showed a staining pattern similar to AFRU. Five Mabs showed strong reactions in the SG but weak labeling of the RER. Mab 3B1 showed the label confined to the SG only. Our results suggest that: (i) in the bovine tissue, some epitopes are present in both precursor and processed materials, whereas others are characteristic of mature glycoproteins present in SG and the RF; (ii) the bovine SCO secretes at least two different compounds present in ependymal and hypendymal cells: (iii) both compounds coexist in the same secretory granule; (iv) there are conserved, class-specific, and species-specific epitopes in the glycoproteins secreted by the SCO of vertebrates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 132 (1972), S. 257-262 
    ISSN: 1432-0878
    Keywords: Nerve regeneration ; Toad ; Nerve fibers ; Smooth endoplasmic reticulum ; Amphibians ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary This study is concerned with the organization of smooth surfaced canaliculi in fibers of regenerating sciatic nerves in a toad. Immediately proximal to the lesion the axons appeared crowded with widened canaliculi and vesicles. The derivation of these components was established through the analysis of isolated canaliculi in PTA stained preparations. In nerve sections 0.5 mm above the lesion most canaliculi are confined to the subsurface axoplasm. The amount of this subsurface reticulum appeares considerably reduced in axons profiles located 1 mm proximal to the lesion. Above this zone only small bundles of subsurface and axial canaliculi are found to occur in the regenerating fibers. The observations sustain the opinion that the accumulation of canaliculi at the end of the interrupted fibers is due to transport of this component by axoplasmic flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Key words Subcommissural organ ; Isograft ; Xenograft ; Reissner’s fiber ; Cerebrospinal fluid ; Rat ; Bovine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The subcommissural organ (SCO) secretes glycoproteins into the cerebrospinal fluid (CSF) that aggregate and form Reissner’s fiber (RF). The factors involved in this aggregation are not known. One factor may be the hydrodynamics of the CSF when flowing through the aqueduct. This hypothesis was tested by isografting rat SCO and xenografting bovine SCO into the lateral ventricle of rats. Xenografts were either fresh bovine SCO or explants cultured for 30 days before transplantation. The grafts were investigated by electron microscopy and immunocytochemistry using antibodies against RF glycoproteins, serotonin and the glucose transporter I. Maximal time of transplantation was 43 days for isografts and 14 days for xenografts. The isografts were not reinnervated but were revascularized; they secreted into the ventricle RF glycoproteins that became progressively packed into pre-RF and RF structures identical to those formed by the SCO in situ. RF was confined to the host ventricle and at its distal end the constituent proteins disassembled. Xenografts were neither reinnervated nor revascularized and secreted into the host ventricle a material that never formed an RF. These findings indicate that the CSF factor responsible for the formation of RF is species specific, and that this process does not depend on the hydrodynamics of the CSF. The blood vessels revascularizing the isografted SCO acquired the characteristics of the vessels irrigating the SCO in situ, namely, a tight endothelium displaying glucose transporter I, and a perivascular space containing long-spacing collagen, thus indicating that basal release of glycoproteins may also occur in the grafted SCO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0878
    Keywords: Subcommissural organ ; Secretory activity, neural control ; Transplantation ; Long-spacing collagen ; Immunocytochemistry ; Molecular markers (neuronal, glial) ; Electron microscopy ; Rat (Sprague-Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary There is increasing evidence that, in the rat, a serotonin-mediated neural input may have an inhibitory influence on the secretory activity of the subcommissural organ (SCO). In the present investigation the rat SCO was studied 7, 30 and 90 days after transplantation under the kidney capsule, an area devoid of local serotonin-containing nerves. The grafted tissue was examined by use of immunocytochemistry employing a series of primary antisera, lectin histochemistry and transmission electron microscopy. The grafted SCO survived transplantation and contained, in addition to secretory ependymal and hypendymal SCO-cells, also elements immunoreactive with antisera against glial fibrillary acidic protein or S-100 protein. In transplants, SCO-cells produced a material displaying the characteristic immunocytochemical and lectin-binding properties of SCO-cells observed under in-situ conditions. The ependymal cells lined 1–3 small cavities, which contained secretory material. A fully developed structural equivalent of Reissner's fiber was, however, never found. The immunocytochemical and ultrastructural study of the grafted SCO showed an absence of nerve fibers within the graft and suggested a state of enhanced secretory activity. A network of protruding basal lamina structures connected the secretory cells to the newly formed capillaries revascularizing the SCO. One week after transplantation, long-spacing collagen started to appear in expanded areas of such laminar networks and also in the perivascular space. It is suggested (i) that the formation of long-spacing forms of collagen is triggered by factors provided by the SCO-secretory cells, and (ii) that secretory material of the ependymal and hypendymal cells may reach the reticular extensions of the basal lamina. In contrast to the SCO in situ, the grafted SCO-cells showed a positive immunoreaction for neuron-specific enolase. They became surrounded by a S-100-immunoreactive glial sheath that separated them from other transplanted cell types and the adjacent kidney tissue of the host.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...