Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Baltimore : Periodicals Archive Online (PAO)
    Human Biology. 54:4 (1982:Dec.) 801 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Muscle, fast-twitch ; Chronic stimulation ; Half relaxation time ; Isometric twitch tension ; Parvalbumin ; Ca2+-uptake ; Sarcoplasmic reticulum ; Staircase phenomenon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The time courses of changes in parvalbumin (PA) content, isometric twitch tension, and half-relaxation time (1/2RT) were studied in rabbit tibialis anterior muscle following chronic 10 Hz nerve stimulation of 1–21 days. Up to 5 days stimulation had no effect on PA content, but it induced a slight (10–15%) increase in the 1/2RT. This change occurred together with the previously observed 50% decrease in Ca2+-uptake by the SR (Leberer et al. 1987). While prolonged stimulation produced no further decrease in the Ca2+-uptake by the SR, PA content declined after 5 days of stimulation. The reduction in PA content was accompanied by a progressive lengthening of the 1/2RT. However, the increase in 1/2RT was particularly pronounced after PA had fallen below 50% of its normal value. A 90% reduction in PA coincided with a 60% increase in the 1/2RT. By this time the staircase phenomenon, normally observed in fast-twitch muscle, was completely abolished. Although the changes in PA content and 1/2RT were not linearly related, these results suggest that PA plays an important role in the relaxation process of mammalian fast-twitch muscle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Chronic, low-frequency nerve stimulation ; Enzyme activities ; Energy metabolism ; Fast-twitch skeletal muscle ; Species differences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Tibialis anterior (TA) muscle of mouse, rat, guinea pig, and rabbit was indirectly stimulated for 10 h/day at 10 Hz up to 28 days. Changes in the activity levels of hexokinase (HK), phosphofructokinase (PFK) glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH), creatine kinase (CK), citrate synthase (CS), malate dehydrogenase (MDH), 3-hydroxyacyl-CoA dehydrogenase (HADH), and β-hydroxybutyrate dehydrogenase (HBDH) were compared. Although the direction of changes in the enzyme activity pattern was in accordance with previous findings on rabbit TA, the magnitude of the responses varied markedly between themammals under study. Mouse TA was almost unaffected. A major effect of chronic stimulation in rat, guinea pig and rabbit was an increase in enzyme activities of aerobic-oxidative metabolism. According to intrinsic differences of the muscles under study, the increases varied among the species and appeared to be inversely related to the basal levels of these enzymes in the unstimulated muscles. Conversely, glycolytic enzyme activities (PFK, GAPDH, LDH) markedly decreased in rat, guinea pig, and rabbit, and were only slightly reduced in mouse. Changes in HK and HBDH activities displayed the largest variations in the induced change between species. These results indicate species-specific patterns of metabolic adaptation to increased contractile activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Fast-twitch muscle ; Chronic stimulation ; Contractil properties ; Parvalbumin ; Sarcoplasmic reticulum ; Ca2+-uptake ; Rat ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study compares changes in contractile properties, Parvalbumin content, and Ca2+-uptake by the sarcoplasmic reticulum (SR) of low-frequency stimulated rat and rabbit tibialis anterior (TA) muscles. Time to peak tension increased 1.8-fold in 35-day stimulated rabbit TA, while no change occurred in rat TA. Isometric twitch tension increased 2-fold in rabbit TA, but was unaltered in rat TA. Parvalbumin (PA) content was more than 90% reduced in rabbit TA, but only 60% in rat TA after 35 days. At this time, PA content of the stimulated rat TA was still higher than that of normal rabbit TA. Taking into account the suggested role of PA as a cytosolic Ca2+ buffer, its decrease could lead to an impaired free Ca2+-decay with a prolonged active state and a higher tension output during a single twitch. This would explain why chronic stimulation led to an increase in isometric twitch tension in rabbit TA, but not in rat TA. The 1.6-fold rise in half-relaxation time of 35-day stimulated rat and rabbit TA most likely resulted from a 50% reduced Ca2+-uptake by the SR, due to a still unknown modification of the Ca2+-transport ATPase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 413 (1989), S. 679-681 
    ISSN: 1432-2013
    Keywords: Chronic, low-frequency nerve stimulation ; Fast-twitch skeletal muscle ; Lactate dehydrogenase isozymes ; Species differences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Analyses of lactate dehydrogenase (LDH) isozymes were performed in normal and chronically stimulated (10 Hz, 10 h/d) tibialis anterior (TA) muscles of the mouse, rat, guinea pig, and rabbit. The electrophoretic mobilities of the individual LDH isozymes of normal muscles revealed speciesspecific patterns. Stimulation up to 28 days evoked increases in the percentage of the H-subunit of LDH. The absolute increase was highest in the rabbit, intermediate in the guinea pig and rat, and lowest in the mouse. The extent of the M- to H-subunit exchange, thus, appeared to be inversely correlated with the basal aerobic-oxidative capacities of the investigated muscles. In addition, a relationship between the expression of the H-subunit or LDH and the increase in aerobic-oxidative capacity became evident from these stimulation-induced processes of metabolic adaptation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Fatty acid oxidation ; Chronic low-frequency stimulation ; Rabbit fast-twitch muscle ; Respiratory chain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Fast-twitch tibialis anterior muscle of the rabbit was subjected to chronic low-frequency (10 Hz, 10 h/day) stimulation for different time periods up to 28 days. Total cellular activities of carnitine: palmitoyl-CoA transferase, crotonase, 3-hydroxyacyl-CoA dehydrogenase, 3-keto-acyl-CoA thiolase, citrate synthase, NADH:cytochrome c oxidoreductase, succinate: cytochrome c oxidoreductase, and cytochrome c oxidase were measured in contralateral and stimulated muscles at various times. With the exception of crotonase, which increased only 1.6-fold after 28 days of stimulation, the other enzymes increased in parallel displaying 3-fold elevated absolute activities. These results, by supporting and extending our previous findings, indicate that the expression of the enzymes of the main metabolic systems of aerobic substrate oxidation, i.e. the citric acid cycle, the fatty acid oxidation and the respiratory chain, is regulated in a coordinate manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: Skeletal muscle hypertrophy ; Muscle stereology ; Exercise adaptations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Muscle biopsies of the vastus lateralis muscle taken before and after 18 weeks of resistance training were compared by preparing frozen cross sections for electron microscopy and using adjacent sections for fiber typing by myosin ATPase activity. Quantitative ultrastructural changes were observed in histochemically-identified muscle fiber types of twelve young women who underwent the training. The percentage of type IIB fibers decreased and IIA fibers increased. The cross-sectional area of all major fiber types increased with training. The absolute volume of myofibrils, intermyofibrillar space, and mitochondria increased with training for most major fiber types (type I, IIA and IIAB), but the relative volume percentages were not significantly changed because of corresponding fiber hypertrophy. Mean mitochondrial size for types I and IIA and myofibril size for types IIC and IIB increased significantly with training. The capillary number per fiber and density did not change with training. Activity levels were measured for selected glycolytic and oxidative enzymes. Cytochrome oxidase and hexokinase increased significantly with training, while creatine kinase, citrate synthase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase and hydroxyacyl CoA dehydrogenase enzymes were not significantly altered. The results suggest that this type of high-repetition resistance training causes the intracellular components of all fiber types to increase proportionally with an increase in fiber size. In addition, the enzyme analysis indicates the muscle as a whole may increase its oxidative phosphorylation capacity in conjunction with the decreased percentage of type IIB fibers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1439-6327
    Keywords: Key words Resistance to fatigue ; Muscle fiber type ; Metabolic profile ; Skeletal muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The purpose of the present study was to look at the changes in the performance of human knee extensor muscles (KEM) induced by 6 weeks of low-frequency (8 Hz) electrical stimulation (LFES). KEM performance of 20 sedentary (before and after stimulation), ten active, and five endurance-trained subjects was evaluated during 25 consecutive 10-s isometric contractions, each separated by a rest period of 5 s. The mean force maintained during six consecutive 10-s contractions was expressed as a relative percentage of that of the first contraction. The mean performance of the first series of six contractions was not altered in response to stimulation, whereas that of the other four series was significantly increased. No significant difference was noted among the three groups in terms of KEM performance during the first series of six contractions. However, after the first series of six contractions, KEM performance of endurance-trained subjects was better in comparison to the other groups. Citrate synthase (CS) activity, capillary number per type IIA and IIB fibers, and the percentage of type IIA muscle fibers determined from vastus lateralis samples were significantly increased in response to the stimulation protocol. No significant change was observed in the proportion or capillary number of type I fibers, or in the areas of type I, IIA, and IIB fibers. The present study provides evidence that resistance to fatigue of human skeletal muscle can be significantly altered in response to 6 weeks of transcutaneous low-frequency electrical stimulation. The improvement in KEM resistance to fatigue of the sedentary subjects was such that, at the end of the stimulation protocol, resistance to fatigue was similar to that of active subjects. However, the ability of endurance-trained subjects to withstand fatigue was still superior compared to that of the other untrained or active subjects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1439-6327
    Keywords: Resistance to fatigue ; Muscle fiber type ; Metabolic profile ; Skeletal muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The purpose of the present study was to look at the changes in the performance of human knee extensor muscles (KEM) induced by 6 weeks of low-frequency (8 Hz) electrical stimulation (LFES). KEM performance of 20 sedentary (before and after stimulation), ten active, and five endurance-trained subjects was evaluated during 25 consecutive 10-s isometric contractions, each separated by a rest period of 5 s. The mean force maintained during six consecutive 10-s contractions was expressed as a relative percentage of that of the first contraction. The mean performance of the first series of six contractions was not altered in response to stimulation, whereas that of the other four series was significantly increased. No significant difference was noted among the three groups in terms of KEM performance during the first series of six contractions. However, after the first series of six contractions, KEM performance of endurance-trained subjects was better in comparison to the other groups. Citrate synthase (CS) activity, capillary number per type IIA and IIB fibers, and the percentage of type IIA muscle fibers determined from vastus lateralis samples were significantly increased in response to the stimulation protocol. No significant change was observed in the proportion or capillary number of type I fibers, or in the areas of type I, IIA, and IIB fibers. The present study provides evidence that resistance to fatigue of human skeletal muscle can be significantly altered in response to 6 weeks of transcutaneous low-frequency electrical stimulation. The improvement in KEM resistance to fatigue of the sedentary subjects was such that, at the end of the stimulation protocol, resistance to fatigue was similar to that of active subjects. However, the ability of endurance-trained subjects to withstand fatigue was still superior compared to that of the other untrained or active subjects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...