Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 3329-3331 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Metal plasma formed by a vacuum arc plasma source can be passed through a toroidal-section magnetic duct for the filtering of macroparticles from the plasma stream. In order to maximize the plasma transport efficiency of the filter the duct wall should be biased, typically to a positive voltage of about 10–20 V. In some cases it is not convenient to bias the duct, for example if the duct wall is part of the grounded vacuum system. However, a positively biased electrode inserted into the duct along its outer major circumference can serve a similar purpose. In this article, we describe our results confirming and quantifying this effect. We also show the parametric dependence of the duct transport on the experimental variables. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 4359-4361 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: High energy implantation of metal ions can be carried out using conventional ion implantation with a mass-selected ion beam in scanned-spot mode by employing a broad-beam approach such as with a vacuum arc ion source, or by utilizing plasma immersion ion implantation with a metal plasma. For many high dose applications, the use of plasma immersion techniques offers a high-rate process, but the formation of a surface film along with the subsurface implanted layer is sometimes a severe or even fatal detriment. We describe here an operating mode of the metal plasma immersion approach by which pure implantation can be obtained. We have demonstrated the technique by carrying out Ti and Ta implantations at energies of about 80 and 120 keV for Ti and Ta, respectively, and doses on the order of 1×1017 ions/cm2. Our experiments show that virtually pure implantation without simultaneous surface deposition can be accomplished. Using proper synchronization of the metal arc and sample voltage pulse, the applied dose that deposits as a film versus the part that is energetically implanted (the deposition-to-implantation ratio) can be precisely controlled.© 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 120-123 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Plasma immersion ion implantation (PIII) is an effective technique for the surface modification of industrial components possessing an irregular shape. We have recently used PIII to treat a real industrial ball bearing to enhance the surface properties of the race surface on which the balls roll. The implantation dose uniformity along the groove is assessed using theoretical simulation and experiments. The two sets of results agree very well, showing larger doses near the center. However, the highest dose is not observed at the bottom or center of the groove, but rather offset toward the side close to the sample platen when the bearing is placed horizontally. The minimum dose is observed near the edge or corner of the groove and our model indicates that it is due to the more glancing ion incidence as a result of the evolution of the ion sheath near the corner. The dose nonuniformity along the groove surface is about 40% based on our experimental data. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...