Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 16351-16356 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 4971-4975 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogen incorporation in silicon layers prepared by plasma-enhanced chemical-vapor deposition using silane dilution by hydrogen has been studied by infrared spectroscopy (IR) and elastic recoil detection analysis (ERDA). The large range of silane dilution investigated can be divided into an amorphous and a microcrystalline zone. These two zones are separated by a narrow transition zone at a dilution level of 7.5%; here, the structure of the material cannot be clearly identified. The films in/near the amorphous/microcrystalline transition zone show a considerably enhanced hydrogen incorporation. Moreover, comparison of IR and ERDA and film stress measurements suggests that these layers contain a substantial amount of molecular hydrogen probably trapped in microvoids. In this particular case the determination of the total H content by IR spectroscopy leads to substantial errors. At silane concentrations below 6%, the hydrogen content decreases sharply and the material becomes progressively microcrystalline. The features observed in the IR-absorption modes can be clearly assigned to mono- and/or dihydride bonds on (100) and (111) surfaces in silicon crystallites. The measurements presented here constitute a further indication for the validity of the proportionality constant of Shanks et al. [Phys. Status Solidi B 110, 43 (1980)], generally used to estimate the hydrogen content in "conventional'' amorphous silicon films from IR spectroscopy; additionally, they indicate that this proportionality constant is also valid for the microcrystalline samples. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 6943-6946 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The photoluminescence spectra of crystalline silicon samples are measured for temperatures below 1000 K. The optical transitions are analyzed in terms of excitonic and band-to-band transitions. From the modeling of the line shape we are able to determine the fundamental indirect band gap for temperatures up to 750 K. The temperature dependence follows the Varshni equation with Eg(0)=1.1692 eV, α=(4.9±0.2)×10−4 eV/K and β=(655±40) K. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 1425-1434 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ground- and excited-state properties of both gas phase and crystalline ruthenocene, Ru(cp)2, are investigated using density functional theory. A symmetry-based technique is employed to calculate the energies of the multiplet splittings of the singly excited triplet states. For the crystalline system, a Buckingham potential is introduced to describe the intermolecular interactions between a given Ru(cp)2 molecule and its first shell of neighbors. The overall agreement between experimental and calculated ground- and excited-state properties is very good as far as absolute transition energies, the Stokes shift and the geometry of the excited states are concerned. An additional energy lowering in the 3B2 component of the 5a1′→4e1″ excited state is obtained when the pseudolinear geometry of Ru(cp)2 is relaxed along the low-frequency bending vibration. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 46 (1954), S. 43-43 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 46 (1954), S. 2290-2294 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 4098-4105 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The results of experimental and theoretical studies, aiming at a quantitative characterization of photoion-induced energy broadening effects in a laser photoelectron source, are reported. The electron source is based on two-step cw laser photoionization of potassium atoms in a collimated beam. In the experimental studies, the attachment spectra for the formation of (N2O)9O− cluster ions through a narrow vibrational Feshbach resonance (full width at half maximum 2.3 meV) were measured as a function of the photocurrent. The theoretical studies involved Monte Carlo simulations of the broadening effects and were based on potential distributions caused by realistic spatial distributions of the photoions. Using the corresponding electric field distribution, trajectories were calculated for a representative ensemble of electrons, and effective electron energy distributions were obtained from averages over the electron trajectories in the volume relevant for electron attachment. Furthermore, the effects of additional weak electric fields, applied along the atomic beam direction, have been simulated. For our geometry (ionization volume about 2 mm3) the effective space charge related energy width is found to be about 16 μeV/pA. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 3456-3458 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have used a simple approach to fabricate buried InGaAs/InP quantum wires with widths down to 15 nm. Combining high resolution electron beam lithography and selective wet chemical etching only the InP cap layer of an InGaAs/InP quantum well is locally removed. InGaAs surface quantum wells are formed in the etched parts of the samples, where the energy band discontinuity of the quantum well is replaced by the high vacuum barrier. Therefore a lateral potential barrier is induced, which confines the carriers to the InP covered wire regions. In addition, the lateral potential can be strongly increased by a selective thermal intermixing step. The luminescence spectra of the wires show significant lateral quantization effects with energy shifts up to 13 meV and high quantum efficiencies up to room temperature. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 6411-6421 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An approach in which the total energy of interacting subsystems is expressed as a bifunctional depending explicitly on two functions: electron densities of the two molecules forming a complex (ρ1 and ρ2) was used to determine the equilibrium geometry and the binding energy of several weak intermolecular complexes involving carbazole and such atoms or molecules as Ne, Ar, CH4, CO, and N2. For these complexes, the experimental dissociation energies fall within the range from 0.48 to 2.06 kcal/mol. Since the effect of the intermolecular vibrations on the dissociation energy is rather small, the experimental measurements provide an excellent reference set. The obtained interaction energies are in a good agreement with experiment and are superior to the ones derived from conventional Kohn–Sham calculations. A detailed analysis of relative contribution of the terms which are expressed using approximate functionals (i.e., exchange-correlation Exc[ρ1+ρ2] and nonadditive kinetic energy Tsnad[ρ1,ρ2]=Ts[ρ1+ρ2]−Ts[ρ1]−Ts[ρ2]) is made. The nonvariational version of the applied formalism is also discussed. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 10718-10723 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Photodetachment spectra of CH3NO2−⋅Arn clusters in the mid-IR are dominated by three strong resonances. These are assigned to autodetaching (AD) C–H stretching vibrational transitions in the valence (as opposed to dipole-bound) form of the molecular anion on the basis of a H/D isotopic substitution study and their solvation dependence. The AD resonances disappear promptly upon addition of the third argon atom, while the resonant structure appears in the action spectrum for formation of CH3NO2− photoproducts for n≥2. The strong argon solvation dependence of the photoproducts is traced to the rapidly changing endoergicity of the electron loss channel due to the differential solvation behavior of the valence anion relative to the neutral. We discuss a statistical limit for this competition, and introduce an intramolecular vibrational energy redistribution mediated AD mechanism unique to polyatomic anions. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...