Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Neurone-glia interaction ; Amino acid transmitters ; K+ ; Tissue culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The action of inhibitory amino acid transmitters GABA, glycine, β-alanine and taurine has been studied on the membrane potential of cultured astrocytes and on the extracellular K+-concentration ([K+]0) using K+-sensitive microelectrodes. All four amino acids caused a depolarization of glial cells and an increase of [K+]0. The effects produced by GABA were usually more pronounced than those caused by the other amino acids. Simultaneous recordings of the action of GABA and glycine on the glial membrane potential and on [K+]0 usually revealed a good correlation in time course, but often there were differences between the amplitudes of glial depolarizations and the values calculated from the [K+]0 increase. 4-Aminopyridine, which blocks K+-conductance of excitable membranes, reversibly abolished both the glial depolarization and the [K+]0 increase produced by GABA and glycine. From these results it is concluded that unlike neurones, glial cells do not have receptors for these amino acid transmitters and that their action on glial cells is caused by the efflux of K+ from activated neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The depolarization of cultured astrocytes by GABA and glycine correlates in amplitude and time course with the increase of the extracellular K+-concentration during perfusion with these amino acids. It is suggested that the glial depolarization is caused by an efflux of K+ from neighbouring neurones activated by the amino acid transmitters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...