Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 437-456 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The structural features of turbulence at the free surface of a channel flow have been experimentally investigated. The experiments were conducted in a horizontal channel of large aspect ratio in the (depth based) Reynolds number range of 2800–8800. The results indicate that the persistent structures on the free surface can be classified as upwellings, downdrafts, and spiral eddies. Upwellings are shown to be related to the bursts originating in the sheared region at the channel bottom and the eddies are seen to be generated at the edges of the upwellings. The eddies often merge if rotating in the same direction, and form "pairs" if rotating in opposite directions—though there are occasional mergers of such counter-rotating ones. The spiral eddies decay slowly and are sometimes annihilated by fresh upwellings. The population densities and the persistence times of the various structures were measured for different flow conditions. The resulting data show that the physical parameters characterizing the structures at the interface, scale with a mix of inner (wall shear stress and viscosity) and outer variables. Measurement of the streamwise and spanwise velocities at the free-surface were made by particle imaging velocimetry (PIV) and the surface normal velocity near the free-surface estimated by continuity. The results indicate that the upwellings and spiral eddy regions would be expected to dominate scalar transport rates at high Prandtl/Schmidt numbers. The one-dimensional energy spectra of the flow field at the free-surface compare well with direct numerical simulations and show a region with −5/3 slope at low wave numbers. This experimentally confirms a previous result regarding the two-dimensionality of turbulence near the free surface, based on numerical simulations by Pan and Banerjee [Phys. Fluids 7, 1649 (1995)]. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 160-177 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A method for particle image velocimetry (PIV) is presented which improves upon the accuracy, computational efficiency and dynamic range (i.e., the difference between the largest and smallest resolvable particle displacement vectors) of conventional PIV techniques. The technique is applied to free-surface turbulence to resolve energy spectra for motions with a wide dynamic range. The methodology—based on multi-grid image processing algorithms for rigid body motion analysis, estimates the displacement vectors at discrete particle locations. The essence of this technique is to estimate large scale motions from image intensity patterns of low spatial frequencies and small scale motions from intensity patterns of high spatial frequencies. Cross-correlation between a pair of time separated particle images is implemented by the hierarchical computational scheme of Burt ["Fast filter transforms for image processing," Int. J. Comput. Vision 16, 20 (1981)]. Each image is convolved with a series of band-pass filters and subsampled to obtain a set of images progressively decreasing in resolution and size. A coarse estimate of the displacement field obtained from pairs of lower resolution images are used to obtain more accurate estimates at the next (finer) level. Processing starts at the level of lowest resolution and stops at the highest resolution level, which contains the original image pair. Due to subsampling of low resolution images, the match template size can be kept constant for all stages of computation, thus eliminating the dependence of the largest resolvable displacement on the size of match template. In the present work, the search area at each level is kept constant at 3×3 pixels and the match template size at 5×5 pixels for all levels of computation. The algorithm has been implemented using simple thresholding based on the confidence level of an estimated displacement vector, as suggested by Anandan ["A computational framework and an algorithm for measurement of visual motion," Int. J. Comput. Vision, 2, 283, (1987)]. However, the confidence-level-based smoothing technique for rigid body motions (continuous velocity fields) could not be applied to displacement estimates obtained at discrete points i.e., the particle locations. Instead, smoothing was performed over the area covered by each particle. The algorithm has been tested against direct numerical simulations of turbulent flows when the flow field is known and particle images have been generated from these with the addition of noise. Both the accuracy of motion estimation and the computation time are seen to improve as compared to conventional PIV methods. Finally, video images taken of particle motion on the free-surface of a channel flow have been used to determine the capabilities of the technique in an experimental study. The resulting spectra show a quasi-two-dimensional character of the free-surface turbulent flow field, which corresponds well with the direct numerical simulations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 6835-6840 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanometer-sized iron particles with diameters in the range 5.5–11.1 nm were grown within a silica gel by an electrodeposition method. Electron diffraction measurements show that some of the iron particles were oxidized to Fe3O4. dc resistivity measurements over the temperature range 110–300 K show a T−1/4 variation indicating a variable range hopping transport. ac conductivity over the frequency range 100 Hz–2 MHz show an overlapping large polaron tunneling mechanism to be operative. The dielectric modulus spectra as a function of frequency were analyzed on the basis of a stretched exponential relaxation function. The values of the exponent β as extracted from this analysis were in the range 0.38–0.46. The activation energies corresponding to the maximum of the imaginary part of the dielectric modulus were in the range 0.13–0.20 eV. These are ascribed to an electron tunneling mechanism. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 3623-3625 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanoparticles of silver with diameters in the range 10.3–25.7 nm were grown within a silica gel medium by an electrodeposition technique. The dc resistivity of the nanocomposites was measured over the temperature range 100–300 K. The resistivity as a function of inverse temperature shows a maximum at around 175 K. This is explained as arising due to the presence of two conduction mechanisms, viz., an electron tunnelling between metal particles and conduction through a percolated metal structure which is fractal in nature. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 847-849 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The dc characteristics of Si1−x−yGexCy P-channel metal–oxide–semiconductor field-effect transistors (PMOSFETs) were evaluated between room temperature and 77 K and were compared to those of Si and Si1−xGex PMOSFETs. The low-field effective mobility in Si1−x−yGexCy devices is found to be higher than that of Si1−xGex (grown in the metastable regime) and Si devices at low gate bias and room temperature. However, with increasing transverse fields and with decreasing temperatures, Si1−x−yGexCy devices show degraded performance. The enhancement at low gate bias is attributed to the strain stabilization effect of C. This application of Si1−x−yGexCy in PMOSFETs demonstrates potential benefits in the use of C for strain stabilization of the binary alloy. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 1027-1029 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Silver particles of average diameters in the range 10.3–25.7 nm have been grown within a gel medium by an electrodeposition technique. Detailed optical absorption characteristics in the wavelength range 250–600 nm have been investigated for nanocomposites comprising these particles dispersed in a polystyrene matrix. Absorption maximum occurs at a wavelength around 350 nm, which increases as the metal particle size is increased. Mie theory with the incorporation of a distribution of particle size gives remarkable agreement with the experimental data. The electrical conductivity as extracted from the theoretical analysis for particles with diameters ∼3 nm is found to be less than Mott's minimum metallic conductivity. This indicates the possibility of a metal insulator transition in this system, which appears to be consistent with earlier electrical conductivity measurements. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 3489-3491 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Pulsed laser induced reactive quenching at a liquid–solid interface was used for the synthesis of tetrahedrally coordinated crystalline carbon nitride on a tungsten substrate. The crystalline phase was identified by transmission electron diffraction. X-ray photoelectron spectroscopy indicated that the carbon atoms are coordinated only tetrahedrally with nitrogen—as expected for C3N4. The atomic percentage of N (considering only those atoms coordinated with C) is about 35%. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 1149-1151 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Composites containing copper particles with nanometer dimensions in a silica gel medium have been synthesized by an electrodeposition technique. The precursor composition of the gel was in the system Cu(NO3)2–SiO2 and the copper particle diameters were in the range of 3.2–11.4 nm. The dc electrical resistivity of pellets obtained from the nanocomposite powders was measured in the temperature range of 110–300 K. A temperature dependence with a fractional exponent of 0.25 was observed. This behavior has been explained on the basis of a variable range hopping mechanism. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 799-805 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Composites of nanometer-sized copper metal with diameters varying from 3.2 to 11.4 nm dispersed in a silica gel medium were synthesized by an electrodeposition method. The ac conductivity and dielectric dispersion of these nanocomposites were measured over the frequency range 0.2 kHz–1.5 MHz at temperatures varying from 150 to 300 K. The ac conductivity showed a frequency dependence of ∝ωn where ω is the angular frequency and n∼0.62 the latter being temperature independent. The quantum mechanical tunneling model was used to explain this result. The dielectric modulus data were analyzed on the basis of a stretched exponential relaxation function. The values of the exponent β as extracted from such analysis were found to be in the range 0.31–0.42 and were temperature independent for different gel compositions. The activation energies were estimated from the temperature variation of frequency at which the imaginary part of the dielectric modulus was maximum. The activation energy value ∼0.24 eV could be explained satisfactorily on the basis of an electron tunneling mechanism. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This article discusses the electrical characterization of low-temperature intrinsic Si films deposited by remote plasma-enhanced chemical vapor deposition. Metal-oxide-semiconductor (MOS) capacitors were fabricated on films deposited over a range of temperatures. Conventional MOS measurements such as capacitance versus voltage, breakdown voltage, Zerbst plot, and charge-to-breakdown were used to analyze the capacitors. The results of these measurements not only yielded information about the electrical properties of the films, but also led to conclusions regarding structural quality and the presence of metal contamination. This, coupled with the fact that capacitor fabrication requires only a simple, moderate-thermal budget process, makes MOS capacitor measurements an attractive technique for the characterization of low temperature epitaxial Si films. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...