Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Intestine, small  (8)
  • Neuropeptides  (8)
  • Enteric neurons  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 333 (1986), S. 393-399 
    ISSN: 1432-1912
    Keywords: Enteric neurons ; Mucosal transport ; Noradrenaline ; Somatostatin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Noradrenaline (NA) and somatostatin (SOM) stimulate intestinal water and ion absorption and are found in mucosal nerve fibres and nerve terminals in submucous ganglia of the guinea-pig small intestine. As the main projection of submucous neurons is to the mucosa, NA and SOM might alter mucosal transport either by a direct effect on the epithelium or indirectly, by affecting submucous neurons. In this study these two possible sites of action of NA and SOM have been investigated in mucosa-submucosa preparations of guinea-pig ileum. In addition, the actions of NA and SOM on the secretory responses caused by stimulation of different populations of submucous neurons have been studied. The stimulants of secretion used were a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10−5 M), 5-hydroxytryptamine (5-HT, 10−7 M) and electrical field stimulation (EFS), which activate cholinergic, noncholinergic and mixed populations of submucous secretomotor neurons, respectively. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net active ion transport across the tissue. NA (≥10−8 M) and SOM (〉10−10 M) each caused a decrease in I sc, indicating a net increase in ion absorption. The NA response was abolished and the magnitude of the SOM response was reduced to 20% by tetrodotoxin (10−7 M). DMPP, 5-HT and EFS each stimulated nerves that increased I sc and each of these responses was significantly diminished by NA and SOM; for both NA and SOM the decrease in the DMPP response was significantly greater than the decrease observed in the response to carbachol (10−6 M). Phentolamine (10−6 M) abolished all of the effects of NA but caused no change in the SOM effects. These studies have shown that NA and SOM cause similar changes in net ion transport, that their actions are primarily on submucous secretomotor neurons and that NA and SOM can diminish the responses to stimulation of both cholinergic and noncholinergic submucous neurons. In this tissue it is also known that SOM coexists with NA in noradrenergic nerve terminals in the submucosa. However, when applied together, NA and SOM caused no greater decrement in the carbachol and 5-HT responses than would be predicted by adding the separate effects of NA and SOM. Hence there was no obvious interaction between NA and SOM effects on mucosal transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1437-9813
    Keywords: Neuropeptides ; Coexistence ; Hirschsprung's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The distributions of nerve fibres immunoreactive for the peptides calcitonin gene-related peptide (CGRP), enkephalin (ENK), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal peptide (VIP) and the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) were studied in healthy colon and samples of ganglionic and aganglionic colon from cases of proven Hirschsprung's disease. Studies of coexistence of reactivities in nerve fibres were performed to predict the possible origins of fibres that are found in the aganglionic bowel, e. g., from sensory or sympathetic ganglia. The muscularis externa of the ganglionic colon contained many nerve fibres immunoreactive for ENK, SP, and VIP, fewer for NPY, and only rare fibres reactive for CGRP, SOM, or TH. In ganglionic colon reactivities for SP and ENK coexisted in nerve fibres in the muscularis externa but in aganglionic colon no ENK immunoreactivity was found and most SP fibres were double-labelled with CGRP reactivity, indicating their probable sensory nature. Abnormally increased numbers of somatostatin-reactive fibres and noradrenergic fibres (marked by TH) were noted in the external muscle, but no coexistence was seen between these reactivities and only a small proportion of the noradrenergic fibres in the muscle showed NPY reactivity although almost all around blood vessels did. Many fibres in the diseased segment had coexistence of NPY and VIP reactivities; these may arise from more orally located intrinsic cell bodies or from pelvic parasympathetic ganglia. In the mucosa of aganglionic colon there was a striking lack of SP-reactive fibres while other fibre types were often normal in number. It is concluded that nerve fibres from sensory ganglia, sympathetic ganglia, nerve cells located more oral in the ganglionated part, and possibly from pelvic parasympathetic ganglia invade the aganglionic bowel in Hirschsprung's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 328 (1985), S. 446-453 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Autonomic nervous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The sites of action and possible roles of substance P in contracting the circular muscle of the guinea-pig ileum were studied using two analogues of substance P that act as antagonists of some of its actions. These ared-Arg1,d-Pro2,d-Trp7,9, Leu11-substance P andd-Pro2,d-Trp7,9-substance P, referred to by the single letter amino acid codes for the substituting amino acids as (RPWWL)-SP and (PWW)-SP, respectively. Records of circular muscle activity were taken from strips of intestine free of mucosa and submucosa and from rings with all layers of intestine intact. Substance P was equally effective in contracting the circular muscle strips as it was in contracting the longitudinal muscle. The contractions of strips were not blocked by hyoscine (2×10−6 M) or tetrodotoxin (6×10−7 M), but were substantially reduced by (RPWWL)-SP (6.7×10−6 M) or (PWW)-SP (2×10−5 M). In contrast, contractions of the circular muscle of whole rings of intestine elicited by low concentrations of substance P (4×10−7M) were blocked by hyoscine or tetrodotoxin but notreduced by the substance P antagonists in the concentrations referred to above. These observations indicate that the antagonists are effective at receptors for substance P on the muscle, but not at substance P receptors on enteric cholinergic nerves. Transmural stimulation of strips of circular muscle or of intestinal rings in the presence of hyoscine evoked contractions that were blocked by tetrodotoxin. These hyoscineresistant, nerve-mediated contractions could be elicited by single pulses in the strips. The contractions were reduced to less than 20% of original amplitude by (RPWWL)-SP (6.7×10−6M). Reflex contractions of the circular muscle recorded on the oral side of a distension stimulus had a low-threshold, hyoscine-sensitive and a high-threshold, hyoscine-insensitive, component. The low threshold component was unaffected by the substance P antagonists whereas the high threshold component was depressed. It is concluded that substance P nerves are effective in transmitting to the circular muscle, that they are final nerves in non-cholinergic excitatory reflexes, and that the substance P antagonist analogues can be used to distinguish actions of substance P at neural and muscle receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 329 (1985), S. 382-387 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Mucosal transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The action of substance P (SP) on mucosal ion transport has been investigated in the guinea-pig small intestine. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net ion transport across the tissue. SP (〉10−10 M) added to the submucosal side of the tissue caused a transient increase in I sc. Tetrodotoxin (TTX, 10−7 M) decreased the maximum SP response to 11% of the control value. TTX completely inhibited the response to electrical field stimulation but had no effect on I sc increases due to carbachol or theophylline. In the presence of hyoscine (10−7 M) the SP response was reduced to 42% of the control value, but hyoscine had no effect on the TTX-resistant SP response. Mepyramine (10−6 M) had no significant effect on the SP response. These results suggest that SP alters mucosal ion transport by stimulation of cholinergic and non-cholinergic nerves in the mucosa-submucosa. A small part of the SP response appears to be due to a direct action on epithelial cells. The SP antagonist (d-Arg1, d-Pro2, d-Trp7.9, Leu11)-SP decreased the magnitude of the TTX-resistant SP response, and caused a decrease of similar magnitude in the total SP response. These results imply that the major component of the SP response, which is due to an action on neurons, is unaffected by this antagonist. It is concluded that the SP receptors on epithelial cells are blocked by the antagonist and are different to the SP receptors on submucous neurons, which are not blocked by the antagonist.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 331 (1985), S. 260-266 
    ISSN: 1432-1912
    Keywords: Enteric neurons ; Serotonin ; Mucosal transport ; Substance P receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It is known that the majority of the mucosal nerve fibres in the guinea-pig small intestine arise from submucous ganglia. There are a number of neurochemically distinct populations of nerve cells in these ganglia, approximately half of them being cholinergic. In these studies we have stimulated isolated preparations of mucosa and submucosa with electrical field stimulation (EFS), 5-hydroxytryptamine (5-HT) and the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) and monitored changes in ion transport. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net ion transport across the tissue. EFS consisted of passing bipolar rectangular stimulus pulses through two platinum wires, one placed on each of the mucosal and submucosal sides of the tissue. EFS, 5-HT and DMPP each caused a transient increase inI sc. Tetrodotoxin (TTX) abolished all of the EFS response and the majority of the response observed with 5-HT or DMPP, suggesting that the action of these stimuli on the mucosa is primarily nerve-mediated. The TTX-sensitive responses to 5-HT (〉5×10−7 M) and DMPP consisted of two components, appearing with different latencies. The response to EFS also consisted of two components. Hyoscine abolished the first component of each of these responses and significantly reduced the amplitude of the second, by 40% (for EFS and 5-HT) and 84% (for DMPP). At lower 5-HT concentrations, only the later component was seen, and this was unaffected by hyoscine. These results suggest that the early component of each response is due to the release of acetylcholine from cholinergic nerves. The hyoscine-resistant responses to EFS and DMPP were reduced by a substance P antagonist (d-Arg1,d-Pro2,d-Trp7,9, Leu11), suggesting that these responses involve activation of substance P receptors in the mucosa. The studies suggest that EFS and 5-HT (〉5×10−7 M) stimulate both cholinergic and non-cholinergic nerves effectively, that 5-HT (10−8–5×10−7 M) preferentially stimulates non-cholinergic nerves and that DMPP preferentially stimulates cholinergic nerves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine ; Neuropeptides ; Gastrin releasing peptide ; Bombesin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27. Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia. It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Perivascular nerves ; Cardiac innervation ; Neuropeptides ; Neuropeptide Y ; Substance P ; Adrenergic nerves ; Amphibia, Anura (Bufo marinus)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The innervation of the major arteries and heart of the toad (Bufo marinus) was examined by use of glyoxylic acid-induced catecholamine fluorescence and peptide immunohistochemistry. All arteries possessed a moderate to dense plexus of adrenergic axons, which also showed neuropeptide Y-like immunoreactivity (NPY-LI). Some adrenergic axons in the intracardiac vagal trunks showed NPY-LI, but the varicose adrenergic axons innervating the cardiac muscle of the atria and ventricle, and the coronary blood vessels did not display NPY-LI. About half of the nerve cell bodies in the anterior sympathetic chain ganglia with dopamine-β-hydroxylase-LI (DBH-LI) also contained NPY-LI. The nerve cell bodies with DBH-LI alone were generally larger (median diameter 30 μm) than those with both DBH-LI and NPY-LI (median diameter 20 μm). Some cell bodies showing DBH-LI alone were surrounded by boutons with NPY-LI but not DBH-LI. Axons that displayed simultaneously both substance P-LI (SP-LI) and calcitonin gene-related peptide-LI (CGRP-LI) also formed a plexus around all arteries studied, being particularly dense around the mesenteric and pulmonary arteries. These axons are most likely sensory since SP-LI was reduced by capsaicin treatment, and nerve cell bodies with both SP-LI and CGRP-LI were found in dorsal root ganglia and the vagal ganglion. A dense plexus of axons showing somatostatin-LI was located around the pulmonary artery and its main intrapulmonary branches. A few nerves with vasoactive intestinal polypeptide-LI were found around the dorsal aorta and pulmonary artery. No perivascular nerves with enkephalin-LI were observed. Reversed-phase, high-pressure liquid chromatography of acid extracts of the large arteries showed that the major peaks of NPY-LI and SP-LI coeluted with porcine NPY (1–36) and synthetic SP (1–11), respectively. Thus, the location and structure of these peptides in perivascular nerves has been highly conserved during vertebrate evolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine ; Noradrenergic nerves ; Pancreatic polypeptide ; Neuropeptide Y ; Neuropeptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Pancreatic polypeptide-like immunoreactivity (PPLI) has been localized in nerves of the guinea-pig stomach and intestine with the use of antibodies raised against avian, bovine and human pancreatic polypeptide (PP), the C-terminal hexapeptide of mammalian PP, and against the related peptide, NPY. Each of the antibodies revealed the same population of neurones. Reactive cell bodies were found in both myenteric (5% of all neurones) and submucous ganglia (26% of all neurones) of the small intestine, and varicose processes were observed in the myenteric plexus, circular muscle, mucosa and around arterioles. The nerves were unaffected by bilateral subdiaphragmatic truncal vagotomy, but the staining of the periarterial nerves disappeared after treatment of animals with reserpine or 6-hydroxydopamine and was also absent after mesenteric nerves had been cut and allowed to degenerate. Vascular nerves showing immunoreactivity for dopamine it-hydroxylase and PPLI had the same distribution. It is concluded that PPLI is located in periarterial noradrenergic nerves. However, other noradrenergic nerves in the intestine do not show PPLI, and PPLI also occurs in nerves that are not noradrenergic. Analysis of changes in the distribution of terminals after microsurgical lesions of pathways in the small intestine showed that processes of myenteric PP-nerve cells provide terminals in the underlying circular muscle and in myenteric ganglia up to about 2 mm more anal. Submucous PP-cell bodies provide terminals to the mucosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Choline acetyltransferase ; Cholecystokinin ; Neuropeptide Y ; Somatostatin ; Substance P ; Intestine, small ; Submucous ganglia ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The peptides cholecystokinin (CCK), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP), and the synthesizing enzyme for acetylcholine, choline acetyltransferase (ChAT) were localized immunohistochemically in nerve cell bodies of the submucous ganglia in the small intestine of the guinea-pig. VIP-like immunoreactivity was found in 45% of submucous neurons. ChAT immunoreactivity was observed in a separate group of nerve cells, which made up 54% of the total population. There were three subsets of neurons immunoreactive for ChAT: (1) ChAT neurons that also contained immunoreactivity for each of the peptides CCK, SOM and NPY, representing 29% of all submucous neurons; (2) ChAT neurons that also contained SP-like immunoreactivity, representing 11% of all submucous neurons, and (3) ChAT cells that did not contain any detectable amount of the peptides that were localized in this study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0878
    Keywords: Calcitonin gene-related peptide ; Cholecystokinin ; Choline acetyltransferase ; Neuropeptide Y ; Somatostatin ; Enteric nervous system ; Intestine, small ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Antisera to neuropeptide Y (NPY) gave an intense immunohistochemical reaction of certain nerve cells in the myenteric and submucous plexuses of the guinea-pig small intestine. Each nerve cell had up to 20 branching, tapering processes that were less than ∼50 μm long and a long process that could be followed for a considerable distance. This morphology corresponds to that of the type-III cells of Dogiel. The long process of each myenteric cell ran through the circular muscle to the submucosa, and in most cases the process could be traced to the mucosa. The submucous nerve cell bodies also had processes that extended to the mucosa. These cell bodies, in both plexuses, also stained with antisera raised against calcitonin generelated peptide (CGRP), cholecystokinin (CCK), choline acetyltransferase (ChAT) and somatostatin (SOM), but did not stain with antibodies against enkephalin, substance P or vasoactive intestinal peptide. Thus, it has been possible for the first time to trace the processes of chemically specified neurons through the layers of the intestinal wall and to show by a direct method that CGRP/CCK/ChAT/NPY/ SOM myenteric and submucous nerves cells provide terminals in the mucosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...