Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Rat  (5)
  • Hippocampal slice  (3)
  • Epileptiform activity  (2)
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    ISSN: 1432-1912
    Schlagwort(e): Entorhinal cortex ; Isomers ; Low magnesium epilepsy ; Losigamone ; Maximal electroshock test ; Mice ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Losigamone (AO-33) is a recemate of a tetronic acid derivative. The effects of losigamone and its three isomers (AO-242, AO-294 and AO-23) were compared on maximal electroshock (MES) induced convulsions in mice and on different patterns of extracellularly recorded, low Mg 2+ induced epileptiform activity in slices of the rat temporal cortex. Lowering Mg 2+ induced recurrent short discharges in areas CA3 and CA1 while ictaform events that lasted for many seconds were induced in the entorhinal cortex. In the hippocampus the activity stayed stable over a number of hours. In contrast, the ictaform events in the entorhinal cortex changed their characteristics after one to two hours to recurrent discharges of 0.8 to 10 s. Afterdischarges and interictal events were absent. 50 μM AO-242 showed a similar efficacy to 50 μM AO-33 in reducing and blocking epileptiform discharges in areas CA1 and CA3 while 50 μM AO-294 and 50 μM AO-23 had weaker effects than 50 μM AO-33. Concentrations of 50 μM and 100 μM AO-242 showed a similar efficacy to AO-33 on ictaform events in the entorhinal cortex. Late recurrent discharges were also blocked by AO-33 and AO-242 although at higher concentrations (300 μM). The in vitro observations are with respect to order of efficacy in accordance with the in vivo data obtained in the maximal electroshock test in mice. The order of potency in the MES test was AO-242〉AO-33≫AO-294≫ AO-23. The results show that the erythro-isomer AO-23, although active, is much less potent than AO-33. Of the two optical isomers of losigamone the (+) isomer AO-242 is more active than the (−) form AO-294.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 57 (1985), S. 404-407 
    ISSN: 1432-1106
    Schlagwort(e): Epileptogenesis ; Kindling ; Hippocampal slice ; Extracellular calcium ; Extracellular potassium ; Rats
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Daily repeated tetanic electrical stimulation (kindling) of the brain may cause a long term enhancement of synaptic transmission and epileptiform activity of progressive severity and generalisation, eventually leading to spontaneous seizures. Evidence for a cellular mechanism underlying kindling has been obtained in vitro in slices from the hippocampus of kindled rats. A marked enhancement in extracellular calcium changes, induced by electrical stimulation or by iontophoresis of excitatory aminoacids was found in kindled tissue. This implies that changes in dendritic calcium conductances are involved in kindling epileptogenesis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 78 (1989), S. 233-242 
    ISSN: 1432-1106
    Schlagwort(e): Hoppocampus ; Granule cells ; Long lasting inhibition ; Frequency habituation ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary In paired pulse stimulation experiments the mechanism underlying frequency habituation of postsynaptic potentials in dentate granule cells of rat hippocampal slices was studied by measuring extra and intracellular potentials as well as changes in extracellular calcium ([Ca2+]0) and potassium concentrations ([K+]0). Orthodromic stimulation of the perforant path induced in most granule cells a late, slow hyperpolarization (SH), lasting for up to 1.2 s. During the SH the membrane conductance was increased by up to 40%. The reversal potential of the SH was around -90 mV and varied with the [K+]0. Frequency habituation was seen in all cells with the SH, whereas cells which display frequency potentiation had no SH. Lowering of [Ca2+]0 reversed paired pulse induced frequency habituation into frequency potentiation at [Ca2+]0 levels where the SH disappeared. Phaclofen blocked the SH and reversed frequency habituation into frequency potentiation. Elevating [Mg2+]0 also reversed frequency habituation into frequency potentiation and reduced the SH. We conclude that the SH represents a late, slow IPSP which is responsible for frequency habituation in dentate granule cells. We noted that during repetitive stimulation the SH soon started to fade. This effect can in part be attributed to extracellular K+-accumulation as suggested by the K+-dependence of the slow IPSP and the observations of changes in [K+]0 during repetitive stimulation. This could explain why frequency habituation reverses into frequency potentiation during repetitive stimulation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-1106
    Schlagwort(e): Extracellular Na+ concentration ; Quisqualate (quis) ; N-methyl-D-aspartate (NMDA) ; Tetrodotoxin (TTX) ; Hippocampal area CA1 ; Rat ; Extracellular Ca2+ concentration ; Extracellular Mg2+ concentration
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Decreases in extracellular sodium concentration ([Na+]o) and associated slow negative field potentials (fp's) were monitored with double barreled sodium sensitive/reference microelectrodes in area CA1 of rat hippocampal slices during iontophoretic application of the glutamate receptor agonists N-methyl-D-aspartate (NMDA) and quisqualate (quis). The effects of lowering [Ca2+]o on these signals were compared to those of lowering [Mg2+]o. Both NMDA- and quis-induced decreases in [Na+]o of up to 60 mM and in the fp's of up to 8 mV. Decreasing [Mg2+]o enhanced NMDA-induced signals, whereas quis-induced signals were unaffected. Lowering [Ca2+]o also enhanced NMDA signals, although somewhat less than lowering [Mg2+]o. This effect was still present, even when voltage dependent Na+ currents were blocked by 10-7 tetrodotoxin. Interestingly, quis-induced signals could be enhanced in a low Ca2+ medium as well, but only when high quis concentrations were used. The results suggest that, during the sorts of large decreases of [Ca2+]o observed during seizure activity, activation of NMDA receptors is facilitated.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 97 (1993), S. 209-224 
    ISSN: 1432-1106
    Schlagwort(e): Hypoxia ; Neocortical slice ; Synaptic transmission ; GABAergic inhibition ; Interneurons ; Development ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract To analyze the functional consequences of hypoxia on the efficacy of intracortical inhibitory mechanisms mediated by gamma-aminobutyric acid (GABA), extra- and intracellular recordings were obtained from rat primary somatosensory cortex in vitro. Hypoxia, induced by transient N2 aeration, caused a decrease in stimulus-evoked inhibitory postsynaptic potentials (IPSPs), followed by a pronounced anoxic depolarization. Upon reoxygenation, the fast (f-) and long-latency (l-) IPSP showed a positive shift in the reversal potential by 24.4 and 14.9 mV, respectively. The peak conductance of the f-and l-IPSP was reversibly reduced in the postanoxic period by 72% and 94%, respectively. Extracellular field potential recordings and application of a paired-pulse inhibition protocol confirmed the enhanced sensitivity of inhibitory synaptic transmission for transient oxygen deprivation. Intracellular recordings from morphologically or electrophysiologically identified interneurons did not reveal any enhanced susceptibility for hypoxia as compared to pyramidal cells, suggesting that inhibitory neurons are not selectively impaired in their functional properties. Intracellularly recorded spontaneous IPSPs were transiently augmented in the postanoxic period, indicating that presynaptic GABA release was not suppressed. Developmental studies in adult (older than postnatal day 28), juvenile (P14–18), and young (P5-8) neocortical slices revealed a prominent functional resistance of immature tissue for hypoxia. In comparison with adult cortex, the hypoxia-induced reduction in excitatory and inhibitory synaptic transmission was significantly smaller in immature cortex. Our data indicate a hypoxia-induced distinct reduction of postsynaptic GABAergic mechanisms, leading to the manifestation of intracortical hyperexcitability as a possible functional consequence.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 51 (1983), S. 153-156 
    ISSN: 1432-1106
    Schlagwort(e): Hippocampal slice ; Epileptiform activity ; CA1 pyramidal cells ; Low calcium ; EGTA ; Rats
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Lowering extracellular [Ca2+] in rat hippocampal slices induces spontaneous epileptiform activity in area CA1, which is characterized by rhythmic burst firing of CA1 neurons and by prolonged negative potential shifts at the pyramidal cell body layer. This activity is accompanied by transient decreases of [Na+] and increases of [K+] in the extracellular space. In spite of the complete blockade of synaptic transmission, the wave of epileptiform activity propagates across area CA1. These findings suggest, that non-synaptic mechanisms may play a role in the generation and spread of epileptiform activity in the mammalian CNS.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1432-1106
    Schlagwort(e): Calcium ; Hippocampal slice ; CA1 ; ω-Agatoxin IVA ; ω-Conotoxin GVIA ; ω-Conotoxin ; MVIIC ; Nimodipine ; Ethosuximide ; Trimethadion ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract The contribution of T-, L-, N-, P-, and Q-type Ca2+ channels to pre-and postsynaptic Ca2+ entry during stimulus-induced high neuronal activity in area CA1 of rat hippocampal slices was investigated by measuring the effect of specific blockers on stimulus-induced decreases in extracellular Ca2+ concentration ([Ca2+]0). [Ca2+]0 was measured with ion-selective electrodes in stratum radiatum (SR) and stratum pyramidale (SP), while Ca2+ entry into neurons was induced with stimulus trains (20 Hz for 10 s) alternately delivered to SR and the alveus, respectively. The [Ca2+]0 decreases recorded in SR in response to SR stimulation represented mainly presynaptic Ca2+ entry (Capre), while [Ca2+]0 decreases recorded in SP in response to alvear stimulation were predominantly based on postsynaptic Ca2+ entry (Capost). Ethosuximide and trimethadione were ineffective m concentrations up to 1 mM. At 10 mM, they reduced Capost and, much less, also Capre Nimodipine (25 μM) reduced Capost and, to a minor extent, Capre. ω-Agatoxin IVA (0.4–1 μM) and ω-conotoxin MVIIC (1 μM) also reduced both Capre and Capost, but with a stronger action on Capre. ω-Conotoxin GVIA (3–8 μM) reduced Capost without effect on Capre. We conclude that during stimulus-induced, high-frequency neuronal activity Capost is carried by P/Q-, N-, and L-type channels and probably a further channel type different from these channels. Capre includes at least P/Q-and possibly L-type channels. N-type channels did not contribute to Capre in our experiments. Since ethosuximide and trimethadione were only effective in high concentrations, their action may be unspecific. Thus, T-type channels do not seem to play a major part in Ca2+ entry in this situation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 87 (1991), S. 581-596 
    ISSN: 1432-1106
    Schlagwort(e): Temporal cortex ; Entorhinal cortex ; Hippocampus ; NMDA ; Low Mg2+ ; Epileptiform activity ; Status epilepticus
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary In order to study spatial interactions during low magnesium induced epileptiform activity, changes in extracellular potassium concentration ([K+]o) and associated slow field potentials (f.p.'s) were recorded in thin rat temporal cortex slices (400 μm) containing the neocortical temporal area 3 (Te3), the entorhinal cortex (EC) and the hippocampal formation with the dentate gyrus, area CA3 and CA1 and the subiculum (Sub). The epileptiform activity was characterized by short recurrent epileptiform discharges (40 to 80 ms, 20/min) in areas CA3 and CA1 and by interictal discharges and tonic and clonic seizure like events (SLE's) (13–88s) in the EC, Te3 and Sub. While interictal discharges occurred independent of each other in the different subfields, the three areas became synchronized during the course of a SLE. The EC, Te3 and Sub all could represent the “focus” for generation of the SLE's. This initiation site for SLE's sometimes changed from one area to another. The characteristics of the rises in [K+]o and subsequent undershoots were comparable to previous observations in in vivo preparations. Interestingly, rises in [K+]o could start before actual onset of seizure like activity in secondarily recruited areas. The epileptiform activity could change its characteristics to either a state of recurrent tonic discharge episodes or to a continuous clonic discharge state reminiscent of various forms of status epilepticus. We did not observe, in any of these states, active participation by area CA3 in the epileptiform activity of the EC in spite of clear projected activity to the dentate gyrus. Even after application of picrotoxin (20 μM), area CA3 did not actively participate in the SLE's generated in the entorhinal cortex. When baclofen (2 μM) was added to the picrotoxin containing medium, SLE's occurred both in the entorhinal cortex and in area CA3, suggesting that inhibition of inhibitory interneurons by baclofen could overcome the “filtering” of projected activity from the entorhinal cortex to the hippocampus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...