Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 22 (1975), S. 87-96 
    ISSN: 1432-1106
    Keywords: Thalamus ; Cortex ; Recruiting response ; Spindling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The thalamic neurones sending their axons to the parietal association cortex (middle suprasylvian gyrus) and receiving monosynaptic excitation from the cerebellar (interpositus or lateral) nucleus were recorded with microelectrodes extracellularly and intracellularly around the anterior ventral (VA) nucleus of the thalamus in cats. Such thalamic neurones are known to carry exclusively the impulses responsible for superficial thalamo-cortical (T-C) responses in the parietal cortex, being called superficial T-C neurones (see Sasaki et al., 1972a, b). 2. Repetitive (6–9/sec) stimulation of the centrum medianum-parafascicular complex (CM) or the intralaminar nuclei (IL) of the thalamus elicited grouped spike discharges of the neurone in synchronization with the recruiting responses in the parietal cortex. The grouped discharges usually preceded the respective cortical responses by several milliseconds. Numbers of the spikes in the grouped discharges increased and decreased as the recruiting responses waxed and waned on the repetitive stimulation. 3. The superficial T-C neurones also showed similar grouped discharges in synchronization with spindling-like, surface-negative cortical responses which occurred spontaneously or were evoked by single thalamic stimulation. 4. It was concluded that the superficial T-C neurones can convey impulses for recruiting responses and spindling-like responses from the thalamus directly to the cerebral cortex. They are supposed to constitute the final T-C pathway of the neuronal circuits of the recruiting system, i.e., non-specific T-C projection system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Pallidum ; Cerebellar nuclei ; Thalamus ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Thalamic projections of the pallidum and the deep cerebellar nuclei were studied by unitary recordings as well as field potential analysis in the thalamus of squirrel monkeys (Saimiri sciureus) under sodium pentobarbital anesthesia. Stimulation of the pallidum produced a positive field potential preceded by incoming afferent fiber volleys in the thalamus. Spontaneous discharges of thalamic neurons were suppressed during this positive potential, and intracellular recordings from the thalamic neurons revealed that the time course of this field potential corresponded to that of the hyperpolarizing potential. The hyperpolarization was presumed to be a monosynaptic inhibitory postsynaptic potential by the short synaptic delay (about 0.5–0.7 ms) and responsiveness to high frequency stimulation (over 150 Hz). The positive field potential on stimulation of the external pallidal segment was distributed in L.po (VA) and the reticular thalamic nucleus around L.po, whereas that on stimulation of the internal segment was in V.o.a (the anterior basal part of VL) and in Z.o (upper part of VL). The projection of the external segment appeared to be less dense than that of the internal segment. The projection of deep cerebellar nuclei was situated in V.o.a, V.o.p (posterior part of basal part of VL), V.o.i (VLm), the intralaminar nucleus (CL), and some part of V. im (the rostral part of VPLo). Projections of the interpositus and dentate nuclei were distributed in a more anterior part than those of the fastigial nucleus. A certain topographical arrangement of the projections of these three nuclei was found in V.o.p, V.o.i and V.im. No significant overlap was detected between projections of the pallidum and the deep cerebellar nuclei within the thalamus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 16 (1972), S. 75-88 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Thalamus ; Cerebral Cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Cerebello-cerebral projections were electrophysiologically investigated in cats under light Nembutal anaesthesia. Marked responses were produced by stimulation of the interpositus and the lateral nucleus of the cerebellum not only in the pericruciate but also in the suprasylvian cortical areas, both areas being contralateral to the cerebellar nuclei stimulated. Medial nucleus stimulation set up little or no response in the cerebral cortex. 2. The previous electrophysiological study on thalamo-cortical (T-C) projections showed two different kinds of responses in the cortex due presumably to two different T-C projection systems, i. e., deep and superficial T-C responses (see Sasaki et al., 1970). According to laminar field potential analysis, the response in the pericruciate area is characterized by a deep T-C response which is often followed by a superficial T-C response, whereas the response in the parietal cortex consists of a pure superficial T-C response. Intracellular potential changes in cortical neurones elicited by cerebellar nucleus stimulation were consistent with the results of laminar field potential analysis. 3. Comparison between laminar field potentials in the same cortex produced by thalamic and cerebellar nucleus stimulation suggests that the response in the pericruciate cortex is mediated by the ventral lateral nucleus and that the response in the parietal cortex is relayed by the ventral anterior nucleus of the thalamus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 16 (1972), S. 89-103 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Thalamus ; Parietal Cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The cerebello-thalamo-cerebral projection system mediating the cerebellar-induced “superficial thalamo-cortical (T-C) response” (the basic type of the so-called recruiting response) to the anterior part of the middle suprasylvian gyrus was investigated electrophysiologically. Responses of thalamic neurones to stimulation of the cerebral cortex and the cerebellar nucleus (medial, interpositus and lateral) were recorded by microelectrodes. 2. In the anterior portions of the ventral thalamic nuclear complex, presumably in and/or around the ventral anterior (VA) nucleus, there were found neurones responding antidromically to stimulation of the suprasylvian cortex and orthodromically to that of the interpositus and the lateral nucleus of the cerebellum. They were called P neurones. The neurones responding antidromically to stimulation of the anterior sigmoid cortex and orthodromically to that of the cerebellar nuclei located mostly caudo ventrolateral to the place of P neurones, presumably in and/or around the ventral lateral (VL) nucleus. These were called F neurones. 3. The cerebellar excitation of P neurones was estimated on its latency to be monosynaptic and was usually followed by an inhibition lasting for more than 100 msec. Large unitary EPSPs were sometimes noted in P neurones on cerebellar stimulation as well as spontaneously. It was concluded that P neurones constitute the direct T-C projection system mediating the superficial T-C response (e. g., recruiting response) to the parietal cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...