Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (28)
Source
Years
Year
Language
  • 21
    Publication Date: 2020-08-05
    Description: An algorithm based on a delayed constraint generation method for solving semi-infinite programs for constructing minimax optimal designs for nonlinear models is proposed. The outer optimization level of the minimax optimization problem is solved using a semidefinite programming based approach that requires the design space be discretized. A nonlinear programming solver is then used to solve the inner program to determine the combination of the parameters that yields the worst-case value of the design criterion. The proposed algorithm is applied to find minimax optimal designs for the logistic model, the flexible 4-parameter Hill homoscedastic model and the general nth order consecutive reaction model, and shows that it (i) produces designs that compare well with minimax $D-$optimal designs obtained from semi-infinite programming method in the literature; (ii) can be applied to semidefinite representable optimality criteria, that include the common A-, E-,G-, I- and D-optimality criteria; (iii) can tackle design problems with arbitrary linear constraints on the weights; and (iv) is fast and relatively easy to use.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-05
    Description: Let $G$ be a directed acyclic graph with $n$ arcs, a source $s$ and a sink $t$. We introduce the cone $K$ of flow matrices, which is a polyhedral cone generated by the matrices $1_P 1_P^T \in R^{n\times n}$, where $1_P\in R^n$ is the incidence vector of the $(s,t)$-path $P$. Several combinatorial problems reduce to a linear optimization problem over $K$. This cone is intractable, but we provide two convergent approximation hierarchies, one of them based on a completely positive representation of $K$. We illustrate this approach by computing bounds for a maximum flow problem with pairwise arc-capacities.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-03-14
    Description: Mathematische Algorithmen können durch Vorhersage von Unsicherheiten optimierte OP-Pläne berechnen, sodass mehrere Zielkriterien wie Überstunden, Wartezeit und Ausfälle im OP minimiert werden.
    Language: German
    Type: other , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-08-05
    Description: We introduce the class of spot-checking games (SC games). These games model problems where the goal is to distribute fare inspectors over a toll network. In an SC game, the pure strategies of network users correspond to paths in a graph, and the pure strategies of the inspectors are subset of arcs to be controlled. Although SC games are not zero-sum, we show that a Nash equilibrium can be computed by linear programming. The computation of a strong Stackelberg equilibrium (SSE) is more relevant for this problem and we give a mixed integer programming (MIP) formulation for this problem. We show that the computation of such an equilibrium is NP-hard. More generally, we prove that it is NP-hard to compute a SSE in a polymatrix game, even if the game is pairwise zero-sum. Then, we give some bounds on the price of spite, which measures how the payoff of the inspector degrades when committing to a Nash equilibrium. Finally, we report computational experiments on instances constructed from real data, for an application to the enforcement of a truck toll in Germany. These numerical results show the efficiency of the proposed methods, as well as the quality of the bounds derived in this article.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-07-19
    Description: Statistical methods to design computer experiments usually rely on a Gaussian process (GP) surrogate model, and typically aim at selecting design points (combinations of algorithmic and model parameters) that minimize the average prediction variance, or maximize the prediction accuracy for the hyperparameters of the GP surrogate. In many applications, experiments have a tunable precision, in the sense that one software parameter controls the tradeoff between accuracy and computing time (e.g., mesh size in FEM simulations or number of Monte-Carlo samples). We formulate the problem of allocating a budget of computing time over a finite set of candidate points for the goals mentioned above. This is a continuous optimization problem, which is moreover convex whenever the tradeoff function accuracy vs. computing time is concave. On the other hand, using non-concave weight functions can help to identify sparse designs. In addition, using sparse kernel approximations drastically reduce the cost per iteration of the multiplicative weights updates that can be used to solve this problem.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-07-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-08-02
    Description: Model-based optimal designs of experiments (M-bODE) for nonlinear models are typically hard to compute. The literature on the computation of M-bODE for nonlinear models when the covariates are categorical variables, i.e. factorial experiments, is scarce. We propose second order cone programming (SOCP) and Mixed Integer Second Order Programming (MISOCP) formulations to find, respectively, approximate and exact A- and D-optimal designs for 2𝑘 factorial experiments for Generalized Linear Models (GLMs). First, locally optimal (approximate and exact) designs for GLMs are addressed using the formulation of Sagnol (J Stat Plan Inference 141(5):1684–1708, 2011). Next, we consider the scenario where the parameters are uncertain, and new formulations are proposed to find Bayesian optimal designs using the A- and log det D-optimality criteria. A quasi Monte-Carlo sampling procedure based on the Hammersley sequence is used for computing the expectation in the parametric region of interest. We demonstrate the application of the algorithm with the logistic, probit and complementary log–log models and consider full and fractional factorial designs.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-02-12
    Description: We consider the stochastic extensible bin packing problem (SEBP) in which n items of stochastic size are packed into m bins of unit capacity. In contrast to the classical bin packing problem, the number of bins is fixed and they can be extended at extra cost. This problem plays an important role in stochastic environments such as in surgery scheduling: Patients must be assigned to operating rooms beforehand, such that the regular capacity is fully utilized while the amount of overtime is as small as possible. This paper focuses on essential ratios between different classes of policies: First, we consider the price of non-splittability, in which we compare the optimal non-anticipatory policy against the optimal fractional assignment policy. We show that this ratio has a tight upper bound of 2. Moreover, we develop an analysis of a fixed assignment variant of the LEPT rule yielding a tight approximation ratio of (1+e−1)≈1.368 under a reasonable assumption on the distributions of job durations. Furthermore, we prove that the price of fixed assignments, related to the benefit of adaptivity, which describes the loss when restricting to fixed assignment policies, is within the same factor. This shows that in some sense, LEPT is the best fixed assignment policy we can hope for.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...