Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 2712-2715 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The residual damage incurred to GaAs via etching with a Cl2/Ar plasma generated by an electron cyclotron resonance (ECR) source was investigated as a function of variations in ion energy, ion flux, and etching temperature. The residual damage and electrical properties of GaAs were strongly influenced by changes in these etching parameters. Lattice damage was incurred in all processing situations in the form of small dislocation loops. GaAs etched at high ion energies with 200 W rf power, exhibited a defect density five times higher than GaAs etched at lower ion energies with 20 W rf power. This enhanced residual damage at the higher rf powers was paralleled by a degradation in the unannealed contact resistance. Higher etch rates, which accompany the higher rf power levels, caused the width of the disordered region to contract as the rf power was elevated. Therefore, the residual etch damage is influenced by both the generation and removal of defects. Increasing the microwave power or ion flux resulted in elevating the residual defect density, surface roughness, and unannealed contact resistance. GaAs etched at high temperatures, ∼350 °C, resulted in a lower contact resistance than GaAs etched at 25 °C. The high temperature etching augmented the defect diffusion which in turn lowered the near surface defect density. This decrease in residual damage was deemed responsible for improving the electrical performance at 350 °C. The electrical measurements were found to be more sensitive to the density of defects than the vertical extent of disorder beneath the etched surface. Results of this investigation demonstrate that in order to minimize material damage and improve electrical performance, etching with an ECR source should be performed at low rf and microwave powers with a high substrate temperature. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 596-599 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A photoluminescence, photocapacitance, and thermal annealing study of Ga-rich GaAs has revealed the complex behavior of acceptor levels at 68–77 and 200 meV above the valence band. The concentration of all levels is enhanced by Ga-rich growth conditions, however, only the 77- and 200-meV levels formed preferably in n-type GaAs are consistent with a double-acceptor model of the gallium antisite defect. In p-type GaAs the 68-meV level associated with a different single-acceptor defect is dominant. It is argued that the inhibited formation of double-acceptor GaAs defects in p-type crystals is caused by the Fermi-energy control of the defect formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 4879-4881 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The magnetic ordering in the series of transition metal alloys (Fe1−xTx)3Ga4 with T=Ni and Ti having values of x in the range 0.05≤x≤0.20 has been investigated at high fields and low temperatures. Magnetization measurements revealed that in contrast to other T substitutions, Ni and Ti induce completely different types of effects on the magnetic properties. In the case of Ni substitution a ferrimagnetic-like type of magnetic order is induced at low compositions and low temperatures and Ti produces a ferromagnetic ground state. For Ti alloys with low composition as the temperature is increased a field induced transition starts to appear at about 50 K which persists up to room temperature suggesting a phase transition from a ferromagnetic to an antiferromagnetic state. The phase diagrams of the Ni and Ti system are explainable in terms of the Moriya-Usami and Isoda theories. Preliminary neutron diffraction measurements on the Ni alloys carried out at ILL suggest the existence of short-range order over a certain temperature range. The behavior observed so far on the various substituted systems leads us to believe that there is a clear relation between the magnetic properties and the relative position of the substitution element with respect to Fe in the Periodic Table. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 66 (1989), S. 3309-3316 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, we were able to grow reproducibly semi-insulating GaAs by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 3459-3469 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A systematic study of the effects of Ti doping on the electrical and optical properties of GaAs and InP has been carried out employing both melt and solution-grown crystals. Utilizing deep level transient spectroscopy, Hall effect measurements, photoconductivity, and optical absorption measurements, it was found that Ti introduces two deep levels in GaAs at Ec −0.23 eV and Ec −1.00 eV which were identified as the Ti3+/Ti2+ acceptor level and the Ti4+/Ti3+ donor level, respectively. In InP the Ti4+/Ti3+ donor level was found near midgap at Ec −0.63 eV, while the Ti3+/Ti2+ acceptor level was found to lie within the conduction band. As a consequence of the midgap position of this donor level, we developed a formulation for producing semi-insulating InP based on doping with Ti to compensate shallow acceptors. Resistivities in excess of 107 Ω cm can easily be obtained using this technique. This is the first semi-insulating III-V compound having a compensation mechanism based on a deep donor impurity. In view of the fact that Ti is expected to have a very low diffusivity in InP, Ti-doped semi-insulating InP should exhibit far greater thermal stability than Fe-doped InP and thus it should prove technologically significant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 62 (1987), S. 163-170 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of vanadium doping on the electrical and optical properties of GaAs were systematically studied in melt-grown crystals prepared by the liquid-encapsulated Czochralski and horizontal Bridgman techniques and in epitaxial crystals prepared by liquid-phase electroepitaxy. By employing deep-level transient spectroscopy, Hall-effect measurements and the V2+(3d3) and V3+(3d2) intracenter optical-absorption spectra, one vanadium-related level was identified in all crystals, i.e., the substitutional-vanadium acceptor level (V3+/V2+) at 0.15±0.01 eV below the bottom of the conduction band. From the absorption measurements we conclude that the vanadium (V4+/V3+) donor level must be located within the valence band. Because of its energy position, the above level cannot account for the reported semi-insulating properties of V-doped GaAs. We observed no midgap levels resulting from vanadium-impurity (defect) complexes. The high resistivity reported for certain V-doped GaAs crystals must result from indirect effects of vanadium, such as the gettering of shallow-level impurities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 656-660 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Voids, formed by the condensation of an excess of implantation-induced vacancies, have been recently identified as the defect directly responsible for dopant diffusion and electrical activation anomalies in Si-implanted and annealed GaAs and GaAs/AlGaAs superlattice materials. Depending on the implanted dose, voids can be distributed either throughout the implanted region or in two bands. We have examined the origin of this void distribution difference. In the as-implanted sample associated with the latter case, a buried continuous band of amorphous GaAs has formed. GaAs formed by the recrystallization of amorphous GaAs does not contain excess vacancies and therefore cannot form voids. However, on either side of the amorphous layer, the excess vacancies can condense to form the observed banded distribution of voids. In the as-implanted sample associated with the former case, a continuous amorphous GaAs layer did not form, and therefore, upon annealing, voids are seen throughout the implanted region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 67 (1990), S. 1621-1621 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 62 (1993), S. 2766-2768 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The luminescence and electro-optic properties of buried 25–35 nm quantum boxes have been measured. The quantum boxes were defined by a combination of molecular beam epitaxial growth and regrowth, electron beam lithography, and dry etching. The photoluminescence from 35 nm boxes shows a blue shift of ∼15 meV compared to the bulk luminescence and an enhancement, taking into account the fill factor. An enhanced effective linear electro-optic coefficient, rl, is observed for the quantum boxes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...