Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 157 (1983), S. 401-410 
    ISSN: 1432-2048
    Keywords: Protein body ; Seed development ; Storage protein ; Vacuole ; Vicia (protein bodies)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Storage proteins of the field bean (Vicia faba L., var. minor, cv. “Fribo”) are synthesized and accumulated in the cotyledons during stage 2 of seed development. Deposition of protein reserves takes place in the protein bodies. The generation of protein bodies was investigated electronmicroscopically using ultra-thin sections as well as the freeze-fracturing technique. During the initial period of storage protein formation, globulins are deposited in large vacuoles which later are transformed to give increasing numbers of small vacuoles with decreasing size. The vacuoles disappear early during the stage of storage protein formation and generate the first protein bodies. During the subsequent period of maximum storage protein formation, which takes place at the rough endoplasmic reticulum (rER), swollen ER strands appear which seem to be entirely filled with protein, and these generate ER-produced protein vacuoles (ERPVAC). The vesicles are transformed in a manner comparable to the vacuoles in the initial period of developmental stage 2 and thus generate the major quantity of protein bodies. Both processes seem to represent only two variants of an uniform mechanism of protein body generation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 49 (1977), S. 151-152 
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Gene evolution ; Seed protein genes ; Legumin ; Vicilin ; Gene family ; Sequence homology ; Intron/exon structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Legumin-like 11S and vicilin-like 7S globulins are the main storage proteins of most angiosperms and gymnosperms. The subunits of the hexameric legumin are synthesized as a precursor comprising a N-terminal acidic α- and a C-terminal basic β-chain. The trimeric vicilin molecule consists of subunits composed of two symmetrical N- and C-terminal structural domains. In a multiple alignment we have compared the N-terminal and C-terminal domains of 11 legumns and seven vicilins of several dicot, monocot, and gymnosperm species. The comparisons using all six possible pairwise combinations reveal that the N-terminal and C-terminal domains of both protein families are similar to each other. These results together with data on the distribution of variable and conserved regions, on the positions of susceptible sites for proteolytic attack, as well as on the published 7S protein tertiary structure suggest that both protein families share a common single-domain ancestor molecule and lead to the hypothesis that a triplication event has occurred during the evolution of a putative legumin/vicilin ancestor gene. Moreover, the comparison of the intron/exon pattern reveals that at least three out of five intron positions are precisely conserved between the genes of both protein families, further supporting the idea of a common evolutionary origin of recent legumin and vicilin encoding genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 40 (1970), S. 286-288 
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 53 (1978), S. 283-284 
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: cDNA ; Legumin subunits ; Polymorphism ; Gene assignment ; Vicia faba
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Legumin, which amounts to approximately 55% of the seed protein in field beans (Vicia faba L. var. minor), is a representative of the 12S storage globulin family. The 12S storage globulins are hexameric holoprotein molecules composed of different types of polymorphic subunits encoded by a multigene family. ‘Type-A’ legumin subunits contain methionine whereas ‘type-B’ are methionine-free subunits. Sequencing of two different type A-specific cDNAs, as well as an FPLC/HPLC-based improvement of subunit fractionation and peptide mapping with subsequent partial amino-acid sequencing, permit the assignment of some of the polymorphic legumin subunits to members of the multigene family. Two different type A subunits (A1 and A2) correspond to the two different cDNA clones pVfLa129 (A2) and 165 (A1), but microheterogeneity in the amino-acid sequences indicates that polymorphic variants of both representatives of this type may exist. Two groups of published type B-specific gene sequences (LeB7, and LeB2, LeB4, LeB6, respectively) are represented by two polymorphic subunit fractions (B3I, B3II, and B4I, B4II). A seventh clone, LeB3, encodes one of the large legumin subunits that is only a minor component of the legumin seed protein complex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 53 (1978), S. 191-192 
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Die Kulturpflanze 26 (1978), S. 37-67 
    ISSN: 1573-5109
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Zusammenfassung Leguminosenfrüchte bestehen aus dem Pericarp, das sich aus dem Fruchtblatt entwickelt, und den davon umschlossenen Samen. Anatomische und physiologische Funktionen des Pericarps entsprechen einerseits denen eines Blattes, andererseits bestehen Ähnlichkeiten zu Speicherorganen. Diese Doppelfunktion ist eng mit der Erhaltung einer kontinuierlichen ontogenetischen Entwicklung der Embryonen verknüpft und trägt zur Erhaltung der Art bei. Die fleischigen und Reserve-Stoffe akkumulierenden Pericarpien der meisten landwirtschaftlich genutzten Körnerleguminosen könnten in vergangenen Zeiten unbewußt durch Pflanzenzüchter herausgebildet worden sein. Ein gut entwickeltes System von Beziehungen zwischen Pericarp und sich entwickelnden Samen könnte einen Evolutionsvorteil darstellen. Infolgedessen sollte die Herausbildung eines solchen Systems mit optimal koordinierter Entwicklung von Pericarp und Samen für die Ertragszüchtung bei Körnerleguminosen von Interesse sein. Pericarpien bilden einen Schutz gegen die Schädigung der sich entwickelnden Samen und erhalten ein günstiges Mikroklima. Alle Transportströme, mit denen Nährstoffe für den herangewachsenen Embryo bereitgestellt werden, passieren das Pericarp; die Leitgewebe des Pericarps bilden die Transportverbindungen zwischen vegetativen Teilen und den sich entwickelnden jungen pflanzlichen Organismen. Ebenso wie Blätter können Pericarpien autotroph Kohlendioxyd und Nitrat assimilieren. Während der 1. Phase der Embryogenese, wenn die Samen noch klein sind und nur langsam wachsen, liegt das anabolische Stoffwechselzentrum der Leguminosenfrüchte im Pericarp, das zu dieser Zeit Stärke und Amide akkumuliert, die während des 2. ontogenetischen Stadiums reaktiviert und in die nun rasch wachsenden Samen verlagert werden. Der Stoffwechsel des Pericarps scheint unter Kontrolle durch die Samen zu stehen. Physiologische Prozesse im Pericarp können zeitweilig die sich entwickelnden Samen gegen Schädigungen infolge Umwelt- und Ernährungsbelastungen abpuffern. Der gegenwärtige Stand unserer Kenntnisse über Funktion und Struktur des Pericarps der Früchte von Körnerleguminosen wird auf der Grundlage von Literaturinformationen und eigener Untersuchungen zusammenfassend dargestellt.
    Abstract: Краткое содержание Плоды бобовых состоя т из околоплодника, образующегося из кар пеллы, и из заключëнных в нëм сем ян. Анатомические и физиологические фун кции околоплодника с одно й стороны соответств уют функциям листа, с другой стороны здесь наблюд ается сходство с запа сающими органами. Эта двойная функция перикарпия н аходится в тесной свя зи с сохранением непреры вного онтогенетического р азвития зародышей и с пособствует сохранению вида. Мясистые, способные а ккумулировать запас ные вещества, околоплодн ики большинства зерновы х бобовых, используем ых в сельском хозяйстве, м огли быть в далëком прошло м бессознательно ото браны растениеводами. Хоро шо развитая система свя зей между околоплодн иком и развивающимися семе нами, возможно, обусловлив ает эволюционное пре имущество. Поэтому создание подобной системы — с о птимально координир ованным развитием околоплод ника и семян — может быть вы годно для селекции на урожайность у зернов ых бобовых. p ]Околоплодники защищ ают от повреждений ра звивающиеся семена и способствуе т сохранению благопри ятного для них микрок лимата. Все пути транспорта питатель ных веществ, предназн ачающихся для растущего зароды ша, проходят через около плодник; проводящие т кани перикарпия являются транспортными связя ми между вегетативны ми частями и развивающимися молодыми растительн ыми организмами. Подо бно листьям, околоплодники могут автотрофно асс имилировать углекис лый газ и нитрат. В течение первой фазы эмбриоге неза, когда семена ещë малы и растут медленно, анаб олический центр обмена веществ находится у плодов бо бовых в околоплоднике, который в это время ак кумулирует крахмал и амиды; во второй, онтогенетиче ской фазе эти последние ре активируются и переп равляются в — теперь уже быстро растущие — семена. Обмен веществ околоплодника, повид имому, находится под контро лем семян. Физиологич еские процессы в околоплод нике могут временно служи ть буфером для развив ающихся семян от повреждений, возникш их вследствие средов ой нагрузки или недостаточного питания. На основе литературн ой информации и собст венных исследований резюми руются данные о функции и стр уктуре околоплодник а зерновых бобовых на современном уровне н аших знаний.
    Notes: Summary Legume fruits consist of the seeds and the pericarp that develops from the carpel. Anatomical as well as physiological functions of the pericarp on the one hand resemble those of leaves, on the other hand similarities exist to storage organs. This double function is closely related to the maintainance of a continuous ontogenetic development of the embryo and contributes to the survival of the species. The fleshy and reserve accumulating pericarps of most of the agronomically used grain legumes may have been accidentally selected by breeders in former times. A well developed system of relations between pericarp and developing seeds may have an evolutionary advantage, too. Consequently, the optimally coordinated development of pericarp and seeds in fruits of grain legumes should also be of interest in breeding for increased yields. Pericarps represent a protection against damage of the developing embryo and maintain a favourable micro-climate. All transport streams supplying nutrients to the developing embryo have to pass through the pericarp tissues; pericarp vascular tissue mediates the transport between vegetative parts and the developing young plant organism. Like leaves pericarp assimilates carbon dioxide as well as nitrate autotrophically. During stage 1 of embryogenesis, when the seeds are only small and slowly growing organs, the pericarp represents the centre of anabolism in the fruits and accumulates starch and amides that are degraded and transferred into the seeds during stage 2 of ontogenesis when the cotyledons are growing rapidly. Pericarp metabolism seems to be controlled by the seeds. Temporarily physiological processes in the pericarp can buffer seed development against damages by environmental and nutrient stress. The present knowledge on the structures and functions of the pericarp in grain legume fruits is summarized on the basis of available literature as well as on the basis of own investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5060
    Keywords: Vicia narbonensis ; gene transfer ; gene expression ; seeds ; 2S albumin ; methionine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Epicotyl explants were co-cultivated with Agrobacterium tumefaciens EHA101 to transfer a chimeric 2S albumin gene construct carried in the binary Ti plasmid vectors pGSGLUC1 or pGA472 into the grain legume Vicia narbonensis. This gene encoding the sulphur-rich Brazil nut albumin was under the control of either the CaMV 35S promoter which permits gene expression in all organs, or the Vicia faba legumin B4 promoter which elicits seed-specific gene expression. After callus formation and selection for kanamycin resistance, somatic embryos were induced which, in the case of transformation with the vector pGSGLUC1, were screened for GUS activity. Embryos that produced GUS were in addition analysed for 2S albumin formation. Selected transgenic embryos were cloned by multiple shoot regeneration. Rooted and fertile plants were obtained by grafting transgenic shoots on the appropriate seedlings. R1 and R2 generations were raised and analysed for GUS as well as 2S albumin gene expression. Expression of the 35S promoter/2S albumin gene fusion took place in all organs of the transgenic plants including the cotyledons of seeds, whereas seed-specific gene expression was found in transformants with the legumin promoter/2S albumin gene fusion. The 2S albumin accumulated in the 2S protein fraction of transgenic seeds and its primary translation product was processed into the 9 and 3 kDa polypeptide chains. The foreign protein was localised in the protein bodies of the grain legume. Analysis of the R2 plants indicated Mendelian inheritance of the 2S albumin gene. In homozygous V. narbonensis plants the amounts of 2S albumin were twice that present in the corresponding heterozygous plants. Whereas only low level formation of the foreign protein was achieved if the gene was under the control of the 35S promoter, approximately 3.0% of the soluble seed protein was 2S albumin if seed-specific gene expression was directed by the legumin B4 promoter. Some of these transformants exhibited a three-fold increase in the methionine content of the salt-soluble protein fraction extracted from seeds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 51 (1977), S. 143-144 
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...