Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Intralaminar nuclei ; Neocortex ; Somatosensory ; NMDA ; 2APV ; Thalamo-cortical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The nature of spontaneous unitary activity of rat neocortex was investigated during slow wave sleep and urethane anaesthesia. Neurones in layer IV and V locations fired in a burst-pause pattern at a low burst repetition rate (0.5–4 per second) during both stage 3/4 sleep and urethane anaesthesia. Occasionally an alternative mode of firing (spindle clusters), associated with focal spindle wave activity, was also found to occur in both states. Using dual microelectrode implants it was found that the onset times of bursts (but not spindle clusters), coincided in the same and opposing cortices, whether in functionally similar or disparate areas. The highest probability was that burst onsets occurred simultaneously (resolution =2.56 ms, interquartile range=40 ms). Spontaneous unitary activity was investigated in the thalamus for temporal correlation with spontaneous unitary activity in neocortex under urethane anaesthesia. Neurones of the anterior intralaminar group (aIL) consistently fired in a burst-pause pattern such that each aIL burst showed a strong tendency to precede a cortical burst. Unilateral electrical stimulation of the aIL nuclei evoked widespread bilateral entrainment of cortical bursts. In contrast stimulation of VP1, or cutaneous sites, evoked only short duration spike responses together with burst abolition in the appropriate restricted Sm1 area. Ionophoresis of NMDA (N-Methyl D-Aspartate) onto Sm1 neurones increased the probability of cortical burst responses to aIL stimulation in addition to decreasing the latency by 20–40 ms (n=11). lonophoresis of 2APV (2-amino 5-phosphono valeric acid) caused simultaneous abolition of spontaneous cortical bursts and bursts evoked by aIL stimulation. Short latency responses to cutaneous and VP1 stimulation were unaffected by ionophoresis of 2APV sufficient to cause burst elimination, suggesting that this pathway does not operate via a 2APV sensitive receptor mechanism. Anatomical features of the aIL nuclei and their overall cortical projection pattern are discussed in relationship to these findings. The activation of cortical NMDA/APV sensitive receptors by aIL afferents in the “spontaneous” generation of bursts in cortical cells is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 70 (1988), S. 155-165 
    ISSN: 1432-1106
    Keywords: Sm1 cortex ; Receptive fields ; Rat ; Bilateral receptive fields ; Hindlimb
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Single cells in the primary somatosensory (Sm1) cortex were investigated for responses to bilateral hindpaw stimulation in Wistar rats anaesthetised by continuous intravenous administration of Althesin. Fifty-one percent of cells sampled (N = 134) responded to equivalent punctate mechanical stimuli delivered to both the contralateral and ipsilateral hindpaws under light anaesthesia. The distribution by cortical depth of cells with receptive fields (RFs) on both hindpaws was not significantly different from cells which had only contralateral RFs. No cell was found with a purely ipsilateral RF. For 86% of cells tested (N=44) the ipsilateral RF was partly or completely homologous with areas within the contralateral RF. The sizes of ipsilateral RFs were smaller on 66% of occasions when tested against their contralateral RFs. Modal latencies to ipsilateral mechanical stimulation were longer than to contralateral stimulation (34.1±9.1 ms (S.D) cf. 26.4±7.2 ms, N=44). Ipsilateral RFs were lost for 77% of cells tested following a 33% increase in anaesthetic infusion rate. Conditioning mechanical stimuli applied to the centre receptive field (CRF) on the ipsilateral hindpaw reduced or abolished a cell's responses to equivalent test stimuli applied to it's contralateral CRF with C-T intervals of 20–200 ms. Conditioning stimuli applied to the CRF contralateral to the cell reduced or abolished responses to test stimuli on the cell's ipsilateral CRF using C-T intervals of 0–900 ms. Responses in one cortex to stimulation of the ipsilateral hindpaw were unaffected by elimination of responses from the same hindpaw in the opposite contralateral Sm1 cortex, where responses had been suppressed by topical Lignocaine administration. Retrograde transport of horseradish peroxidase from hindpaw Sm1 cortex labelled many cells in homolateral thalamus, but failed to label cells in the entire forebrain contralateral to the injection site. It is concluded that direct crossed thalamocortical and callosal Sm1-Sm1 pathways do not contribute to the production of hindpaw ipsilateral receptive fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 39 (1980), S. 327-340 
    ISSN: 1432-1106
    Keywords: Slow waves ; Unitary activity ; Cuneate nucleus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Depth profiles of averaged evoked potentials (AEPs) and simultaneously generated unitary activity have been recorded from the cuneate nucleus of the rat in response to controlled tactile stimulation of the ipsilateral forepaw. Four separate components of the AEPs were isolated, N1, N2, P, and N3. N1corresponds to the classical N wave previously described by other workers; four fractions of N1 are described. The classical P wave which follows N1 reverses at 150–350 μm depth to become a negative wave of identical time course, the N2 wave, at deeper locations. N2 peaks deeper than N1 within the non-relay portion of the cuneate nucleus, or below in the subnuclear reticular førmation where it is the only significant evoked component. Its strong susceptibility to high Mg++ C.S.F. superperfusion suggests a polysynaptic origin. It is argued that the depth distribution and time course of N2 does not support its function relating to depolarisation of primary afferents (PAD) in the vicinity of synaptically driven cuneate cells. Alternative possibilities for its origin are discussed. An additional sustained component of the AEP, the N3 component, is described and evaluated. N3 is co-extensive with N1, has a long time course and simple exponential decay, and is the component most resistant to high Mg++ C.S.F. superperfusion. A similar component to N3 has been described by previous workers in the spinal cord, where it has been shown to arise from glia depolarised by K+ effluxing from discharging afferents and cells. A similar origin for N3 is suggested, and its possible involvement with PAD discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Neocortex ; NMDA ; 2APV ; Somatosensory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Spontaneous activity of single neurones in neocortex was sampled using pairs of microelectrodes in rats anaesthetised with urethane. In confirmation of previous studies, many cells recorded from middle layers characteristically fired in bursts, the onset times of which were synchronous both unilaterally and bilaterally. Iontophoresis of 2APV onto such cells either caused an abolition of bursts or a reduction in spikes per burst. In the latter case action potentials which occurred later in the burst were preferentially abolished. Iontophoresis of NMDA onto the same cells caused a prolongation of bursts with minimal effect on intraburst interspike interval. In interactive trials with the two drugs the effect of NMDA could be abolished by 2APV, and NMDA counteracted the effect of 2APV. It is concluded that spontaneous burst generation in neocortex during urethane anaesthesia is generated through a cortical NMDA/2APV-sensitive receptor mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Response properties of single units in the mouse barrel cortex were studied to determine the sequence in which the neurons that form a cortical column become activated by a single‘natural’stimulus. Mice (n= 11) were anaesthetized with urethane. For a total of 153 cells, grouped by cortical layer, responses to a standardized deflection of a single whisker were characterized using poststimulus time and latency histograms. Usually, for each unit, data were collected for stimulation of its principal whisker (PW; the whiskers corresponding to the barrel column in which the cell was located) and of the four whiskers surrounding the PW. In all layers, PW stimulation evoked responses at shorter latency than surround whisker stimulation. In layers II – III and IV a bimodal distribution of cells according to latency to PW stimulation was found. Statistical analysis indicated the presence of two classes of cells in each of these layers:‘fast’units (latency 〈 15 ms) and 'slow’units (latency 〉15 ms). The great majority of cells in layers I, V and VI fired at latencies of 〉20 ms to PW stimulation. In general, stimulation of surround whiskers evoked a smaller response than PW stimulation. The fast cells of layer IV showed the greatest response to PW stimulation (mean = 1.78 spikes/100 ms poststimulus). Their firing was maximal during the 10–20 ms poststimulus epoch, while the slow layer IV cells fired maximally during the 20 – 30 ms poststimulus epoch. Surround inhibition occurred in all layers within the first 10 ms after stimulus onset, during which period the fast cells are the most active ones, and are thus likely to be responsible for the surround inhibition. This notion is supported by an analysis of spike duration that showed that eight of the ten cells with a thin spike (supposed to be GABAergic; McCormick et al., J. Neurophysiol., 54, 782 – 806, 1985), had PW latencies of 〈15 ms. We conclude that the activation of a barrel column is initially inhibitory in nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 288 (1980), S. 181-183 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The high-speed polarographic technique was developed from systems being used for evaluating catecholamine levels in the central nervous system9'10. Our system differs principally in that it is some hundreds of times faster, is carried out at the single-cell, rather than macrocellular, level, and ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Metabolic brain disease 3 (1988), S. 91-124 
    ISSN: 1573-7365
    Keywords: thiamine deficiency ; thalamic intralaminar nuclei ; neocortex ; synchronous burst spontaneous activity ; excitotoxic brain lesions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Dietary thiamine deficiency, enhanced by pyrithiamine administration in adult rats, produces overt lesions in the brain that are especially prominent in the thalamus. The present study was undertaken to determine whether the thalamic lesions could be correlated with alterations in the physiological properties of neurons in the thalamus and somatosensory cortex. The regimen for experimentally inducing thiamine deficiency produced large lesions in the thalamus of every case; the lesions included most, if not all, of the neurons in the intralaminar thalamic nuclei. The extent of the lesion in the intralaminar thalamus was highly correlated with the loss of bilaterally synchronous spontaneous activity in the cerebral cortex. This correlation was seen in animals analyzed as early as 1–18 hr after the appearance of opisthotonus, the crisis state of thiamine deficiency, and as late as 2–9 weeks of recovery following thiamine replacement therapy. The loss of bilateral synchronous bursting neuronal activity following intralaminar thalamic lesions is consistent with the proposed role of the intralaminar thalamus as a pacemaker for rhythmic cortical activity (Armstrong-Jameset al.,Exp. Brain Res., 1985; Fox and Armstrong-James,Exp. Brain Res. 63: 505–518, 1986). The location and size of the central lesions within the thalamus suggest that the observed neuronal loss could result from a nonhemorrhagic infarction in the ventromedial branches of the superior cerebellar arteries. Experimental thiamine deficiency also produced alterations in the receptive field properties of the somatosensory cortex neurons in all animals examined. Changes in cortical receptive field properties were correlated with the destruction of sensory relay neurons in the thalamic ventrobasal complex. The loss of the central lateral thalamic input to the cortex and the loss of somatosensory relay neurons in the ventrobasal thalamus in experimental thiamine deficiency produce alterations in cortical function which may contribute to deficits in memory and cognition analogous to those which characterize Korsakoff's psychosis in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...