Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (7)
  • 1890-1899
  • 2008  (7)
  • ddc:004  (3)
  • ddc:550  (3)
  • ddc:080  (1)
Years
  • 2005-2009  (7)
  • 1890-1899
Year
Keywords
Language
  • 1
    facet.materialart.
    Unknown
    Publication Date: 2019-10-24
    Keywords: ddc:080
    Language: German
    Type: annualzib , doc-type:report
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-09
    Description: Asymptotic analyses of the three dimensional compressible flow equations coupled with transport equations for the mixing ratios of water vapour, cloud water and rain water are described. We obtain reduced systems of equations for two particular regimes of length and time scales: Models for the long time evolution of deep convective columns and for the short time evolution of shallow convective layers. The asymptotic deep convective column model is anelastic, yet the vertical motion is pressure free, i.e., it evolves freely in interaction with buoyancy while the horizontal divergence adjusts to fullfil the anelastic constraint. The perturbation pressure guaranteeing compliance with the horizontal divergence constraint obeys a Poisson-type equation. Surprisingly, the vertical velocity plays an important role in the horizontal dynamics through the Coriolis term. The vertical acceleration in a saturated column is directly determined by the buoyancy induced by potential temperature differences relative to the background stratification. This potential temperature deviation is a conserved quantity. Evaporation is the only important microphysical process in the undersaturated regime. The evaporation rate depends on the saturation deficit and the amount of rain water present and determines the (downward) vertical velocity and the distribution of water vapour. To connect the deep convective column solutions to top and bottom boundary conditions, a different flow regime needs to be accounted for. Within shallow layers whose depth is comparable to the column diameters, adjustment to physical boundary conditions can take place. This is the second regime considered in this report. The shallow convective layer regime is shown to be asymptotically described by Boussinesq-type equations. These equations are closed by evolution equations which show that, in the saturated regime, the distributions of potential temperature and cloud water are determined by a condensation rate that is directly proportional to the vertical velocity. In the undersaturated regime, the potential temperature distribution is determined by the amount of rain present, since the water vapour in this case is shown to be a conserved quantity. In both regimes the distribution of rain water depends on the rain water flux.
    Keywords: ddc:550
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-09
    Description: By use of asymptotic analysis Carqué et al. [ZIB-Report 08-03] derived an asymptotic column model for deep convective clouds based on the three dimensional compressible flow equations and a bulk microphysics parameterization. In the present study we check the plausibility of the reduced model equations by comparing implications of the model for the scaling of various terms in the governing equations with those extracted from large eddy simulation data based on the computational model UCLA-LES1.1. This code solves an anelastic system of equations with complete droplet based microphysics and LES closures. We observe that the simulation data corroborate the basic assumptions of the asymptotic analysis and the main conclusions implied by the asymptotically reduced model. The code output reflects the scales of space and time: The deep convective clouds show an anisotropic structure where the horizontal scale is considerably narrower than the vertical scale; with a period of about 20 min, from emergence to breakup, the life cycle of one particular deep convective cloud corresponds exactly to the reference time of the reduced model. The characteristic properties of dynamics as predicted by the reduced model are also reflected in the simulation data: The horizontal flow is controlled by the pressure field; the vertical velocity develops freely independent of pressure over the depth of the convective column; the vertical velocity is directly determined by the buoyancy induced by the potential temperature deviation relative to the background stratification. With respect to grid resolution we observe that refining the spatial step size of the equidistant computational grid from 125 m to 62.5 m does not influence the results: Even with the coarser grid the relevant physical phenomena are sufficiently resolved. Somewhat surprisingly, the Coriolis term involving vertical velocity and acting on the horizontal (east-west) velocity component appears at leading order in the asymptotics. Accordingly, we expected to find a nontrivial impact of this Coriolis effect on the horizontal flow velocity components within columns of updrafts. However, switching the term on and off in subsequent simulations did not sizeably affect the results.
    Keywords: ddc:550
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-09
    Description: A theoretical and numerical small-scale study of the evaporative cooling phenomenon that might appear in the stratocumulus-topped boundary layers is presented. An ideal configuration of a cloud-top mixing layer is considered as defined by two nonturbulent horizontal layers, stably stratified and with buoyancy reversal within a certain range of mixture fractions due to the evaporative cooling. Linear stability analysis of the shear-free configuration is employed to provide a new interpretation of the buoyancy reversal parameter, namely, in terms of a time-scale ratio between the unstable and the stable modes of the system. An incompressible high-order numerical algorithm to perform direct numerical simulation of the configuration is described and two-dimensional simulations of single-mode perturbations are discussed. These simulations confirm the role of the different parameters identified in the linear stability analysis and show that convoluted flow patterns can be generated by the evaporative cooling even for the low levels of buoyancy reversal found in stratocumulus clouds. They also show that there is no enhancement of entrainment of upper layer fluid in the shear-free configuration, and mixing enhancement by the evaporative cooling is restricted to the lower layer.
    Keywords: ddc:550
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-30
    Description: We study performance and scaling of the Berlin Quantum Chromodynamics Program (BQCD) on the SGI Altix 4700 at Leibniz Supercomputing Centre (LRZ). We employ different communication methods (MPI, MPI with two OpenMP threads per process, as well as the shmem library) and run the MPI version on the two types of nodes of that machine. For comparison with other machines we made performance measurements on an IBM p690 cluster and a Cray XT4.
    Keywords: ddc:004
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-19
    Description: In dieser Arbeit wird eine Serie von Remeshing-Verfahren um die Berücksichtigung von nicht-mannigfaltigen Dreiecksvernetzungen und Merkmalskantenzügen erweitert. Die betrachteten Verfahren arbeiten im Wesentlichen lokal. Daher können die im Rahmen dieser Arbeit entwickelten Erweiterungen, die nicht-mannigfaltige Kantenzüge und Merkmalskantenzüge betreffen, separat beschrieben werden. Dabei wird ein Ansatz verfolgt, beide Arten von besonderen Kantenzügen aufgrund ihrer Gemeinsamkeiten einheitlich zu behandeln. Dieser besteht zum einen darin, eine Korrespondenz zwischen Kantenzügen auf der Eingabe- und der Ausgabefläche zu erhalten, indem die Remeshing-Operationen auf den Kantenzügen in entsprechend eingeschränkter Weise verwendet werden. Zum anderen wird beschrieben, wie die Abtastdichte der Kantenzüge dynamisch an die Abtastdichte der Umgebung angepasst werden kann, um für weitgehende Isotropie in der Nähe von Merkmalskantenzügen zu sorgen.
    Description: A unified approach for consistent remeshing of arbitrary non-manifold triangle meshes with additional user-defined feature lines is presented. The method is based on local operations only and produces meshes of high regularity and triangle quality while preserving the geometry as well as topology of the feature lines as well as the input mesh.
    Keywords: ddc:004
    Language: German
    Type: masterthesis , doc-type:masterThesis
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-19
    Description: This work introduces a novel streamline seeding technique based on dual streamlines that are orthogonal to the vector field, instead of tangential. The greedy algorithm presented here produces a net of orthogonal streamlines that is iteratively refined resulting in good domain coverage and a high degree of continuity and uniformity. The algorithm is easy to implement and efficient, and it naturally extends to curved surfaces.
    Description: In dieser Arbeit wird eine neue Strategie zur Platzierung von Stromlinien vorgestellt. Hierzu werden zusätzliche duale Stromlinien verwendet, die --im Gegensatz zur üblichen Definition-- orthogonal zum Vektorfeld verlaufen. Der vorgestellte Greedy-Algorithmus berechnet ein Netz aus orthogonalen Stromlinien, welches iterativ verfeinert wird, was zu einer guten Abdeckung der Domäne und einer gleichmäßigen Verteilung der Stromlinien führt. Es handelt sich um einen einfach zu implementierenden und effizienten Algorithmus, der direkt auf gekrümmten Oberflächen anwendbar ist.
    Keywords: ddc:004
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...