Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (31)
  • 1985-1989
  • 1990  (31)
  • English  (31)
Material
Years
  • 1990-1994  (31)
  • 1985-1989
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: A family of secant methods based on general rank-1 updates has been revisited in view of the construction of iterative solvers for large non- Hermitian linear systems. As it turns out, both Broydens "good" and "bad" update techniques play a special role - but should be associated with two different line search principles. For Broydens "bad" update technique, a minimum residual principle is natural - thus making it theorectically comparable with a series of well-known algorithms like GMRES. Broydens "good" update technique, however, is shown to be naturally linked with a minimum "next correction" principle - which asymptotically mimics a minimum error principle. The two minimization principles differ significantly for sufficiently large system dimension. Numerical experiments on discretized PDE's of convection diffusion type in 2-D with internal layers give a first impression of the possible power of the derived "good" Broyden variant. {\bf Key Words:} nonsymmetric linear system, secant method, rank-1 update, Broydens method, line search, GMRES. AMS(MOS) {\bf Subject Classifications:} 65F10, 65N20.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: A new adaptive multilevel approach for parabolic PDE's is presented. Full adaptivity of the algorithm is realized by combining multilevel time discretization, better known as extrapolation methods, and multilevel finite element space discretization. In the theoretical part of the paper the existence of asymptotic expansions in terms of time-steps for single-step methods in Hilbert space is established. Finite element approximation then leads to perturbed expansions, whose perturbations, however, can be pushed below a necessary level by means of an adaptive grid control. The theoretical presentation is independent of space dimension. In this part I of the paper details of the algorithm and numerical examples are given for the 1D case only. The numerical results clearly show the significant perspectives opened by the new algorithmic approach.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: In this paper we consider symplectic difference schemes for perturbed Hamiltonian systems of integrable ones, which can cover many important problems. Symplectic difference schemes for general Hamiltonian systems can also be used to these problems. But the perturbation property has not been paid proper attention to, which is important in the method proposed here. Numerical simulation shows that, for this method the time step size can be taken quite large and the qualitative property , such as preserving invariant tori, is also better than usual symplectic difference schemes.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-26
    Description: Countable systems of ordinary differential equations appear frequently in chemistry, physics, biology and medicine. They can be considered as ordinary differential equations in sequence spaces. In this work, a full adaptive algorithm for the computational treatment of such systems is developed. The method combines time discretization with extrapolation in Hilbert spaces with a discrete Galerkin approach as discretization of the stationary subproblems. The Galerkin method is based on orthogonal functions of a discrete variable , which are generated by certain weight functions. A theory of countable systems in the associated weighted sequence spaces is developed as well as a theory of the Galerkin method. The Galerkin equations can be assembled either by use of analytical properties of the orthogonal functions or numerically by a multilevel summation algorithm. The resulting algorithm CODEX is applied to many examples of technological interest, in particular from polymer chemistry.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-03-06
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-16
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-24
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-24
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-24
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-02-24
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-02-26
    Description: Parameter-dependent systems of nonlinear equations with symmetry are treated by a combination of symbolic and numerical computations. In the symbolic part of the algorithm the complete analysis of the symmetry occurs, and it is here where symmetrical normal forms, symmetry reduced systems, and block diagonal Jacobians are computed. Given a particular problem, the symbolic algorithm can create and compute through the list of possible bifurcations thereby forming a so-called tree of decisions correlated to the different types of symmetry breaking bifurcation points. The remaining part of the algorithm deals with the numerical pathfollowing based on the implicit reparametrisation as suggested and worked out by Deuflhard/Fiedler/Kunkel. The symmetry preserving bifurcation points are computed using recently developed augmented systems incorporating the use of symmetry. {\bf Keywords:} pathfollowing, mixed symbolic-numeric algorithm, parameter-dependent, nonlinear systems, linear representations.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-02-26
    Description: Systems of polynomial equations often have symmetry. The Buchberger algorithm which may be used for the solution ignores this symmetry. It is restricted to moderate problems unless factorizing polynomials are found leading to several smaller systems. Therefore two methods are presented which use the symmetry to find factorizing polynomials, decompose the ideal and thus decrease the complexitiy of the system a lot. In a first approach projections determine factorizing polynomials as input for the solution process, if the group contains reflections with respect to a hyperplane. Two different ways are described for the symmetric group Sm and the dihedral group Dm. While for Sm subsystems are ignored if they have the same zeros modulo G as another subsystem, for the dihedral group Dm polynomials with more than two factors are generated with the help of the theory of linear representations and restrictions are used as well. These decomposition algorithms are independent of the finally used solution technique. We used the REDUCE package Groebner to solve examples from CAPRASSE, DEMARET and NOONBURG which illustrate the efficiency of our REDUCE program. A short introduction to the theory of linear representations is given. In a second approach problems of another class are transformed such that more factors are found during the computation; these transformations are based on the theory of linear representations. Examples illustrate these approaches. The range of solvable problems is enlarged significantly.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-02-26
    Description: Symplectic difference schemes have been shown to be a right formalism for numerical computation of Hamiltonian systems. They are suitable to long time computation and of good qualitative properties. These properties are ensured by the fact that a symplectic difference scheme approximating to a time-independent Hamiltonian system can be regarded as a perturbed time-dependent Hamiltonian system of the original one. That is, a solution of a symplectic difference scheme is a solution of a certain perturbed time dependent Hamiltonian system evaluated at discrete (time) points. This is the main result of the paper. Moreover, linear symplectic difference schemes approximating to a linear time-independent Hamiltonian system can be regarded as a perturbed time-independent Hamiltonian system. So it has all properties that a linear Hamiltonian system has. Based on these results, stochastic webs and chaos in symplectic difference schemes are also discussed. They will appear in numerical simulation for Hamiltonian systems, even with one degree of freedom.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-02-26
    Description: The potential distribution of reverse biased pn-junctions can be described by a double obstacle problem for the Laplacian. This problem is solved by a self adaptive Finite Element Method involving automatic termination criteria for the iterative solver, local error estimation and local mesh refinement. Special attention is paid to the efficient resolution of the geometries typically arising in semiconductor device simulation. The algorithm is applied to a reverse biased pn- junction with multi-step field plate and stop- electrode to illustrate its efficiency and reliability.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-12-15
    Description: The paper presents a theoretical characterization of the often observed asymptotic mesh independence of Newton's method, which means that Newton's method applied to discretized operator equations behaves essentially the same for all sufficiently fine discretizations. The theory does not need any uniform Lipschitz assumptions that were necessary in comparable earlier treatments. The refined Newton-Mysovskii theorem, which will be of interest in a wider context, gives both existence and uniqueness of the solution and quadratic convergence for sufficiently good starting points. Attention is restricted to Galerkin approximations even though similar results should hold for finite difference methods - but corresponding proofs would certainly be more technical. As an illustrative example, adaptive 1-D collocation methods are discussed.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-02-26
    Description: Oxidation mechanisms even for rather simple hydrocarbons like heptane consist due to the occurrence of many isomeric structures of thousands of reactions of hundreds of species. The automatic generation of these reaction mechanisms using artificial intelligence means is described. Results are presented for n-heptane-air mixtures, where a hand-written reaction mechanism tested against experimental data is available.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-02-26
    Description: The paper surveys three aspects of chemical computing, which seem to play a role in recent developments. First, extrapolation methods for the numerical treatment of differential- algebraic equations are introduced. The associated extrapolation code LIMEX has reached a certain level of sophistication, which makes it a real competitor to the elsewhere widely used multi-step code DASSL of Petzold. Second, adaptive methods of lines for partial differential equations such as those arising in combustion problems are treated. Both static and dynamic regridding techniques are discussed in some detail. Finally, some new ideas about the treatment of the kinetic equations arising from polymer reactions are presented. The new feature of the suggested approach is the application of a Galerkin procedure using sets of orthogonal polynomials over a discrete variable (which, of course, in the case of polymer reactions is the polymer degree). The new approach may open the door to a new reliable low dimensional treatment of complex polymer reactions.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-02-26
    Description: The discrete Galerkin method developed by the authors has turned out to be an efficient tool for the computational treatment of very large scale ODE systems arising in polyreaction kinetics. Up to now, this approach has been worked out in detail for homogeneous polymer reactions. The present paper deals with one line of possible extensions of the method to the case of so-called heterogeneous processes, which may appear e. g. in smog reactions. The associated mathematical models involve reaction coefficients depending on the chain length of the reacting polymer. The herein suggested extension is worked out in some detail on the basis of the earlier paper. In addition, a numerical example describing polymer degradation is included.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-02-26
    Description: Newton methods for nonlinear problems are known to require the solution of a sequence of linear problems of the same type. For very large scale problems, as understood herein, the arising linear systems can only be solved by iterative methods. Then Newtons iteration appears as outer iteration. The question of interest will be to control the accuracy of the inner iteration such that the convergence speed of Newtons method is preserved. The purpose of the paper is to combine the concept of inexact Newton methods with the concept of the affine invariant exact Newton methods - which is important for problems with ill- conditioned Jacobian matrices (such as typical 2-D or 3-D discretized partial differential equations).
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-02-26
    Description: A variety of secant methods has been revisited in view of the construction of iterative solvers for large nonsymmetric linear systems $ Ax = b $ stemming from the discretization of convection diffusion equations. In the first section, we tried to approximate $ A ^{-1} $ directly. Since the sparsity structure of A- is not known, additional storage vectors are needed during the iteration. In the next section, an incomplete factorization $ LU $ of $ A $ is the starting point and we tried to improve this easy invertible approximation of $ A $. The update is constructed in such a way that the sparsity structure of $ L $ and $ U $ is maintained. Two different sparsity preserving updates are investigated from theoretical and practical point of view. Numerical experiments on discretized PDEs of convection diffusion type in 2- D with internal layers and on "arbitrary" matrices with symmetric sparsity structure are given. {\bf Key words:} nonsymmetric linear system, sparse secant method, Broyden's method, incomplete factorization.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-02-26
    Description: The mathematical modeling of macromolecular reactions leads to countable (possibly infinite) systems of ordinary differential equations (CODE's). This paper reviews two recent developments of the so-called discrete Galerkin method, which has been developed for the numerical treatment of countable systems, which arise e.g. in polymer chemistry. The first approach can be considered as a method of lines with moving basis functions and has been implemented recently in the program package MACRON. The second type of the Galerkin method is characterized by a so-called outer time discretization of the complete problem and an appropriate and efficient solution of the arising subproblems. This method is realized in the research code CODEX.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-02-26
    Description: In continuation of part I this paper develops a variable-order time discretization in Hilbert space based on a multiplicative error correction. Matching of time and space errors as explained in part I allows to construct an adaptive multilevel discretization of the parabolic problem. In contrast to the extrapolation method in time, which has been used in part I, the new time discretization allows to separate space and time errors and further to solve fewer elliptic subproblems with less effort, which is essential in view of the application to space dimension greater than one. Numerical examples for space dimension one are included which clearly indicate the improvement.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-02-26
    Description: In the present paper, the improvement of an incomplete factorization of a non-symmetric matrix A is discussed. Starting from the ideas of sparsity preserving quasi-Newton methods, an algorithm is developed which improves the approximation of A by the incomplete factorization maintaining the sparsity structure of the matrices. No renumbering of the unknowns or the admittance of additional fill-in is necessary. The linear convergence of the algorithm is proved under the assumption, that $ L $ and $ U $* have the same sparsity structure and an incomplete factorization with some reasonable approximation property exits. In combination with this algorithm, the method of incomplete factorization and its several modifications are applicable to a wider class of problems with improved convergence qualities. This is shown by a numerical example. {\bf Key Words:} non-symmetric linear system, sparse secant method, incomplete factorization. AMS(MOS) {\bf Subject Classifications:} 65F10, 65N20, 65N30.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-02-26
    Description: This paper presents the new program package MACRON for the simulation of macromolecular kinetics including standard chemical reactions. Such problems lead to countable (possibly) infinite systems of ordinary differential equations (CODE's), which are numerically treated by the so-called discrete Galerkin method here. By a chemical compiler the required analytical preprocessing is performed, such that the complete reaction system, standard kinetics as well as macromolecular reactions, can be entered in the chemical formalism. Typical macromolecular reaction steps are chain addition, termination, chain transfer and degradation (cracking). In order to ensure efficiency and reliability, high sophisticated numerical routines are built within the package. MACRON can be used without a detailed knowledge of the used numerical methods. As an illustration the application of MACRON to some realistic problems is presented.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-02-26
    Description: We study the power-law type solutions of the fourth order field equations derived from a generic quadratic Lagrangian density in the case of multidimensional Bianchi I cosmological models. All the solutions of the system of algebraic equations have been found, using computer algebra, from a search of the Groebner bases associated to it. While, in space dimension $ d = 3 $ , the Einsteinian Kasner metric is still the most general power-law type solution, for $ d 〉 3 $ , no solution, other than the Minkowski space-time, is common to the three systems of equations associated with the three contributions to the Lagrangian density. In the case of a pure Riemann-squared contribution (suggested by a recent calculation of the effective action for the heterotic string), the possibility exists to realize a splitting of the $ d $-dimensional space into a ( $ d - 3 $)-dimensional internal space and a physical 3- dimensional space, the latter expanding in time as a power bigger than 2 (about 4.5 when $ d = 9 $).
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-02-26
    Description: BOXES computes a triangulation from a 2D domain description which consists of an arbitrary set of rectangles. Each rectangle may have attributes to control the triangulating process, define subdomain classes, or specify boundary conditions. The output of the program can be used as a coarse grid for KASKADE or one of its variants. Additional features are extensive checking of the user input, graphical display, and simple editing.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-02-26
    Description: This report presents the final realization and implementation of a global inexact Newton method proposed by Deuflhard. In order to create a complete piece of software, a recently developed iterative solver (program GBIT) due to Deuflhard, Freund, Walter is adapted and serves as the standard iterative linear solver. Alternative linear iterative solvers may be adapted as well, e.g. the widely distributed code GMRES. The new software package GIANT (Global Inexact Affine Invariant Newton Techniques) allows an efficient and robust numerical solution of very large scale highly nonlinear systems. Due to the user friendly interface and its modular design, the software package is open for an easy adaptation to specific problems. Numerical experiments for some selected problems illustrate performance and usage of the package.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-07-07
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-07-19
    Description: Efficient implementations of irregular problems on vector and parallel architectures are generally hard to realize. An important class of problems are Gauß-Seidel iteration schemes applied to irregular data sets. The unstructured data dependences arising there prevent restructuring compilers from generating efficient code for vector or parallel machines. It is shown, how to structure the data dependences by decomposing the underlying data set using graph coloring techniques and by specifying a particular execution order already on the algorithm level. Methods to master the irregularities originating from different types of tasks are proposed. An application is given and some open issues and future developments are discussed.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 31
    Title: Linear programming and network flows /
    Author: Bazaraa, Mokhtar S.
    Contributer: Jarvis, John J. , Sherali, Hanif D.
    Edition: 2. ed.
    Publisher: New York :Wiley,
    Year of publication: 1990
    Pages: XIV, 684 S.
    ISBN: 0-471-63681-9
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...