Bibliothek

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 567-574 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Oxygen behavior during the formation of CrSi2 and TiSi2 was studied using 16O(α,α)16O resonant scattering and mass dispersive recoil detection analysis. The Ti and Cr films were deposited by e-beam evaporation in a cryopumped system. The oxygen content in the films was varied by evaporating at different pressures. The silicide films were formed by solid-solid reaction of the metal layers with the silicon substrate, and the annealing conditions were such that both partly and fully reacted silicides were obtained. The extent of the silicide formation was monitored by backscattering spectrometry. In the case of CrSi2, oxygen was found to be uniformly distributed throughout the silicide layer after annealing. For the Ti/TiSi2 system, however, oxygen seems to have preferentially remained in the Ti layer during the silicide growth, and its final distribution was confined in a region in the silicide close to the surface. It was also observed in the latter case that silicon diffused to the surface at the initial stage of annealing. A model based on the Nernst–Einstein equation is proposed to provide a general explanation for the oxygen behavior in metal/silicon systems. In addition, it was shown that oxygen which was initially in the form of metal oxides and in solid solution had been transformed into SiO2 after the silicide formation. Oxygen loss is observed for all samples, and increases with the extent of annealing.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...