Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999
  • 1990-1994  (16)
  • 1975-1979
  • 1991  (6)
  • 1990  (10)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 62 (1991), S. 982-985 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Small alignment errors of right-angle linkage monochromators typical to many x-ray absorption fine structure beamlines can cause significant errors in the energy calibrations. A 1° misalignment produces errors greater than 1 keV over the hard x-ray operating range of a typical monochromator. The energy error caused by such misalignments is analyzed and its mathematical form given. The error can be corrected by inverting the expression and the amount of misalignment determined by accurate energy measurements at a few points. The accuracy of the corrections is tested. The effects of this error on x-ray absorption fine structure data and their interpretation are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 2542-2545 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The design and performance of a high-precision optical reflectometer are described. This instrument has been optimized for measuring the specular reflectivity of thin films and multilayer structures of interest in semiconductor technology. Its design emphasizes high spectral and spatial resolution, photometric accuracy, and stray light rejection. Use of a spectrometer drive linear in wavenumber (energy) and a flexible data acquisition system facilitates data analysis. The performance of the reflectometer is demonstrated using a set of specimens consisting of silicon-dioxide layers on silicon substrates for which the oxide thicknesses had been determined by ellipsometry. Excellent agreement is obtained between the thicknesses derived from the reflectivity spectra and those determined ellipsometrically.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A diagnostic technique which measures the direction of the internal magnetic field pitch angle has been used successfully on TFTR. The technique requires the injection of high-speed Li pellets. The magnetic field direction is measured by observing the polarization direction of the intense visible line emission from Li+ (λ≈5485 A(ring), 1s2p 3P0,1,2→1s2s 3S0) in the pellet ablation cloud. The presence of the large (primarily toroidal) magnetic field causes the line to be split due to the Zeeman effect, and the unshifted π component is polarized with its polarization direction parallel to the local magnetic field. In devices with sufficiently strong fields (B(approximately-greater-than)4.5 T), the Zeeman splitting of the line is large enough, relative to the linewidth of each Zeeman component, that enough residual polarization remains. Because the pellet moves about 1 cm before the Li+ is ionized (τionization(approximately-less-than)10 μs), the time history of the polarization direction (as the pellet penetrates from the outside toward the plasma center) yields the local magnetic field direction. In the TFTR experiment, spatial resolution of the measurement is typically ∼7 cm, limited by the requirement that a large number of photons must be collected in order to make the measurement of the polarization angle. Typically, the pitch of the field is measured with an accuracy of ±0.01 rad, limited by the photon statistics. The measurements of the internal field pitch angle, combined with external magnetic measurements, have been used in a code which finds the solution of the Grad–Shafranov equation, yielding the equilibrium which is the best fit to the measured inputs. The q profile constructed from this equilibrium is believed to be accurate to ∼±10% over the region where there are internal magnetic measurements. Internal field measurements and equilibrium reconstructions have been performed for a variety of TFTR discharges, including 1.6 MA ohmic plasmas where the internal field is measured at the beginning of the current flat top (before the onset of sawteeth) and 2 s into the flat top (with sawteeth), and in extremely high βp(Ip=0.3 MA, βp≈4.5) discharges.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Recent operation of the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Research 1, 51 (1986)] has produced plasma equilibria with values of Λ≡βp eq+li/2 as large as 7, εβp dia≡2μ0ε〈p⊥〉/〈〈Bp〉〉2 as large as 1.6, and Troyon normalized diamagnetic beta [Plasma Phys. Controlled Fusion 26, 209 (1984); Phys. Lett. 110A, 29 (1985)], βNdia≡108〈βt⊥〉aB0/Ip as large as 4.7. When εβp dia(approximately-greater-than)1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge that was sustained for many energy confinement times, τE. The largest values of εβp and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and τE greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain QDD reached a value of 1.3×10−3 in a discharge with Ip=1 MA and εβp dia=0.85. A large, sustained negative loop voltage during the steady-state portion of the discharge indicates that a substantial noninductive component of Ip exists in these plasmas. Transport code analysis indicates that the bootstrap current constitutes up to 65% of Ip. Magnetohydrodynamic (MHD) ballooning stability analysis shows that, while these plasmas are near, or at the βp limit, the pressure gradient in the plasma core is in the first region of stability to high-n modes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength Sn and D–D fusion power gain QDD are realized in the neutral-beam-fueled and heated "supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, Sn increases approximately as P1.8b. The highest-Q shots are characterized by high Te (up to 12 keV), Ti (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad Te profiles, and lower Zeff. Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the "carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, QDD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [ne(0)/〈ne〉] during the beam pulse. To date, the best fusion results are Sn=5×1016 n/sec, QDD=1.85×10−3, and neutron yield=4.0×1016 n/pulse, obtained at Ip=1.6–1.9 MA and beam energy Eb=95–103 keV, with nearly balanced co- and counter-injected beam power. Computer simulations of supershot plasmas show that typically 50%–60% of Sn arises from beam–target reactions, with the remainder divided between beam–beam and thermonuclear reactions, the thermonuclear fraction increasing with Pb. The simulations predict that QDT=0.3–0.4 would be obtained for the best present plasma conditions, if half the deuterium neutral beams were to be replaced by tritium beams. Somewhat higher values are calculated if D beams are injected into a predominantly tritium target plasma. The projected central beta of fusion alphas is 0.4%–0.6%, a level sufficient for the study of alpha-induced collective effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnetohydrodynamic (MHD) activity within three zones (core, half-radius, and edge) of TFTR [Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna, 1987), Vol. 1, p. 51] tokamak plasmas are discussed. Near the core of the plasma column, sawteeth are often observed. Two types of sawteeth are studied in detail; one with complete, and the other with incomplete, magnetic reconnection. Their characteristics are determined by the shape of the q profile. Near the half-radius the m/n=3/2 and 2/1 resistive ballooning modes are found to correlate with a beta collapse. The pressure and the pressure gradient at the mode rational surface are found to play an important role in stability. MHD activity is also studied at the plasma edge during limiter H modes. The edge localized modes (ELM's) are found to have a precursor mode with a frequency between 50–200 kHz and a mode number m/n=1/0. The mode does not show a ballooning structure. While these instabilities have been studied on many other machines, on TFTR the studies have been extended to high pressure (plasma pressure greater than 4×105 Pa) and low collisionality [vi@B|(a/2)〈0.002, ve*(a/2)〈0.01].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low-recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≈χi〉χe. Recent measurements have confirmed similar behavior in broad-density L-mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test-particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked-density TFTR "supershots'' with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In high-temperature, peaked-density plasmas the observed gradient scale length parameter ηtoti=d ln Ti/d ln ne correlates reasonably well with predictions of the threshold for exciting ion-temperature-gradient-driven turbulence (ITGDT), as would be expected for plasmas at marginal stability with respect to this strong transport mechanism. In L-mode plasmas where ITGDT is expected to be too weak to enforce marginal stability, ηtoti exceeds this threshold considerably. However, preliminary experiments have failed to observe a significant increase in ion heat transport when ηtoti was rapidly forced above ηc (the threshold for exciting ITGDT) using a perturbative particle source, as would have been expected for a plasma at marginal stability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Steady-state and perturbative transport analysis are complementary techniques for the study of transport in tokamaks. These techniques are applied to the investigation of auxiliary-heated L-mode and supershot plasmas in the tokamak fusion test reactor (TFTR) [R. J. Hawryluk et al., Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 11th International Conference, Kyoto, 1986 (IAEA, Vienna, 1987), Vol. 1, p. 51.]. In the L mode, both steady-state and perturbative transport measurements reveal a strong temperature dependence that is consistent with electrostatic microinstability theory and the degradation of confinement with neutral beam power. Steady-state analysis of the ion heat and momentum balance in supershots indicates a reduction and a significant weakening of the power-law dependence on the transport in the center of the discharge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 1852-1857 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The average parallel resistivity and the location of the q=1 surface are found to be consistent with the predictions of neoclassical transport theory and inconsistent with classical resistivity (uncorrected for toroidal effects) for Ohmic plasmas in the TFTR tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna, 1987), Vol. I, p. 51], both in near-equilibrium and during ramping of the plasma current. These observations are incompatible with theories predicting anomalous parallel resistivity in concert with anomalous perpendicular transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...