Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2696-2699 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A photoconductance method was used to determine the band-gap energy and, therefore, the Al mole fraction of bulk AlxGa1−xN and AlxGa1−xN/GaN heterostructures. The results are compared with those obtained by a more elaborate photoluminescence method. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 1763-1771 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of strain-induced band-gap modulation has been studied in a GaAs/AlGaAs multiple-quantum-well structure with the wells located at various depths in the structure. The energy change in the quantum wells was calculated based on simple elasticity theory and measured using photoluminescence on the structure where a thin-film stressor array was deposited. Metallic thin-film stressors were made by conventional thin-film deposition techniques followed by photolithography. It was found that the elasticity theory describes the energy changes reasonably well in comparison with the experimental results. For stressor layers that react with the heterojunction structure, the situation was more complex and requires more detailed analysis. Based on the calculated and experimental results it appears possible to fabricate quantum wire with lateral dimensions of less than 100 nm using thin-film technology and e-beam lithography. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 4211-4215 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report that a Au/Ge/Pd layered structure can result in low contact resistivities (∼10−6 Ω cm2) to n-GaAs processed in three temperature ranges (175–200, 340–350, and 425–450 °C). The contacts processed below the Au–Ge eutectic temperature (361 °C) show good surface and interface morphology, thermal stability, Au wire bondability, and reproducibility. The ohmic contact formation mechanisms are also presented. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 2056-2060 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Single-element contacts, Pd or Ni, on various p-InP substrates grown by liquid-encapsulation Czochralski (LEC) and by metal-organic chemical vapor deposition were investigated. Pd or Ni contacts on the substrates supplied by one certain manufacturer were found to be ohmic with a minimum contact resistivity of ∼5×10−5 Ω cm2 after annealing between 420 and 500 °C. However, ohmic behavior was not observed for these contacts on other substrates. Hall measurement, double-crystal x-ray diffractometry, and photoluminescence technique were used to evaluate the substrates. It was speculated that existence of intrinsic defects, such as P vacancies and other possible defects, in p-InP grown by LEC method may be responsible for the observed difference in ohmic behavior. A defect-assisted tunneling mechanism is proposed to account for the observed ohmic behavior of single-element contacts on certain p-InP substrates. This approach is potentially useful for making ohmic contacts to other compound semiconductors. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the use of thin film technology to introduce controllable and thermally stable stress into semiconductor heterostructures. Two simple schemes are used. The first scheme is to use interfacial reactions between a metal and the substrate, such as Ni, Co, Pd, and Pt on GaAs/AlGaAs. The induced stress in the structure is reproducible and controllable because the volumetric change for a given reaction is fixed, as long as the deposited film is fully reacted to form a compound. The stability of the stress depends on the stability of the compound. In the case of Ni and Co on GaAs/AlGaAs, the induced stress is thermally stable up to 600 °C. Evaporated films and reacted films are usually under tension. The second scheme is to use rf sputtered W or WNi alloy films where W or WNi is sputtered onto a negative dc biased substrate. This scheme effectively provides highly compressed films. The thermal stability depends on the concentration of Ni in the WNi alloy. Using the two schemes above, we have fabricated low-loss (∼1 dB/cm at 1.52 μm wavelength) photoelastic waveguides in GaAs/AlGaAs heterostructures, and explored the interrelationship between the photoelastic waveguide characteristics and the stress. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 4216-4220 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report the ohmic contact formation mechanism of the low resistance (∼1×10−6 Ω cm2) Au/Ge/Pd contact to n-GaAs annealed at 175 °C. Cross-sectional transmission electron microscopy and Rutherford backscattering spectrometry were utilized in this study. It is found that the solid phase regrowth process, interdiffusion between Au and Ge, and the enhancement of the conductivity of the excess Ge layer are responsible for the observed low contact resistivity. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 1880-1882 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A method for enhancing effective Schottky barrier heights in III–V nitride heterostructures based on the piezoelectric effect is proposed, demonstrated, and analyzed. Two-layer GaN/AlxGa1−xN barriers within heterostructure field-effect transistor epitaxial layer structures are shown to possess significantly larger effective barrier heights than those for AlxGa1−xN, and the influence of composition, doping, and layer thicknesses is assessed. A GaN/Al0.25Ga0.75N barrier structure optimized for heterojunction field-effect transistors is shown to yield a barrier height enhancement of 0.37 V over that for Al0.25Ga0.75N. Corresponding reductions in forward-bias current and reverse-bias leakage are observed in current–voltage measurements performed on Schottky diodes. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 1211-1213 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Deep-level transient spectroscopy has been used to characterize electronic defects in n-type GaN grown by reactive molecular-beam epitaxy. Five deep-level electronic defects were observed, with activation energies E1=0.234±0.006, E2=0.578±0.006, E3=0.657±0.031, E4=0.961±0.026, and E5=0.240±0.012 eV. Among these, the levels labeled E1, E2, and E3 are interpreted as corresponding to deep levels previously reported in n-GaN grown by both hydride vapor-phase epitaxy and metal organic chemical vapor deposition. Levels E4 and E5 do not correspond to any previously reported defect levels, and are characterized for the first time in our studies. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 70 (1997), S. 1275-1277 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Platinum silicide (PtSi) and Pt Schottky contacts on n-GaN have been investigated and compared. The PtSi contacts were formed on n-GaN by annealing a multilayer structure of Pt/Si with the appropriate thickness ratio at 400 °C for 1 h in forming gas. The barrier height of the as-formed PtSi contacts was found to be 0.87 eV capacitance–voltage (C–V), and remained unchanged after further annealing at 400 and 500 °C. Upon annealing at 600 °C for 1 h, the barrier height decreased to 0.74 eV (C–V), but the diodes remained well-behaved. The as-deposited Pt yielded a barrier height of 1.0 eV (C–V). Upon annealing at 400 °C for 1 h, the Pt diodes degraded and most of the diodes did not survive additional annealing at 400 °C for longer times. The electrical measurements and the Rutherford backscattering spectrometry results indicated that PtSi contacts are thermally much more stable than Pt contacts on GaN. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 7442-7447 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Planar separate-confinement, double-heterostructure, single-quantum-well photoelastic GaAs/AlGaAs lasers have been fabricated using a novel yet practical processing technique involving thin-film surface WNi stressors for waveguiding and ion implantation for isolation. A p++-GaAs contact layer regrown by chemical beam epitaxy has been used to improve the WNi ohmic contacts to the lasers. Even without bonding on heat sinks, these planar photoelastic lasers operate at continuous wave at room temperature. The lowest threshold is 29 mA for a cavity length of 178 μm and a stressor width of 5 μm. The internal quantum efficiency above threshold is 75%. The characteristic temperature is 114 K. The main waveguiding mechanism of the photoelastic lasers is determined to be weak index guiding with the beam waist in the junction plane measured 10 μm behind the end facet. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...