Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (11)
  • 2017  (3)
  • 2015  (8)
Source
Years
  • 2015-2019  (11)
Year
Language
  • 1
    Publication Date: 2020-08-05
    Description: We consider a stationary discrete-time linear process that can be observed by a finite number of sensors. The experimental design for the observations consists of an allocation of available resources to these sensors. We formalize the problem of selecting a design that maximizes the information matrix of the steady-state of the Kalman filter, with respect to a standard optimality criterion, such as $D-$ or $A-$optimality. This problem generalizes the optimal experimental design problem for a linear regression model with a finite design space and uncorrelated errors. Finally, we show that under natural assumptions, a steady-state optimal design can be computed by semidefinite programming.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-22
    Description: We study an extension of the shortest path network interdiction problem and present a novel real-world application in this area. We consider the problem of determining optimal locations for toll control stations on the arcs of a transportation network. We handle the fact that drivers can avoid control stations on parallel secondary roads. The problem is formulated as a mixed integer program and solved using Benders decomposition. We present experimental results for the application of our models to German motorways.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: Model-based optimal design of experiments (M-bODE) is a crucial step in model parametrization since it encloses a framework that maximizes the amount of information extracted from a battery of lab experiments. We address the design of M-bODE for dynamic models considering a continuous representation of the design. We use Semidefinite Programming (SDP) to derive robust minmax formulations for nonlinear models, and extend the formulations to other criteria. The approaches are demonstrated for a CSTR where a two-step reaction occurs.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: Let the design of an experiment be represented by an $s-$dimensional vector $w$ of weights with nonnegative components. Let the quality of $w$ for the estimation of the parameters of the statistical model be measured by the criterion of $D-$optimality, defined as the $m$th root of the determinant of the information matrix $M(w)=\sum_{i=1}^s w_i A_i A_i^T$, where $A_i$,$i=1,\ldots,s$ are known matrices with $m$ rows. In this paper, we show that the criterion of $D-$optimality is second-order cone representable. As a result, the method of second-order cone programming can be used to compute an approximate $D-$optimal design with any system of linear constraints on the vector of weights. More importantly, the proposed characterization allows us to compute an exact $D-$optimal design, which is possible thanks to high-quality branch-and-cut solvers specialized to solve mixed integer second-order cone programming problems. Our results extend to the case of the criterion of $D_K-$optimality, which measures the quality of $w$ for the estimation of a linear parameter subsystem defined by a full-rank coefficient matrix $K$. We prove that some other widely used criteria are also second-order cone representable, for instance, the criteria of $A-$, $A_K$-, $G-$ and $I-$optimality. We present several numerical examples demonstrating the efficiency and general applicability of the proposed method. We show that in many cases the mixed integer second-order cone programming approach allows us to find a provably optimal exact design, while the standard heuristics systematically miss the optimum.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Description: Model-based optimal design of experiments (M-bODE) is a crucial step in model parametrization since it encloses a framework that maximizes the amount of information extracted from a battery of lab experiments. We address the design of M-bODE for dynamic models considering a continuous representation of the design. We use Semidefinite Programming (SDP) to derive robust minmax formulations for nonlinear models, and extend the formulations to other criteria. The approaches are demonstrated for a CSTR where a two-step reaction occurs.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-19
    Description: We propose (Mixed Integer) Second Order Cone Programming formulations to find approximate and exact $D-$optimal designs for $2^k$ factorial experiments for Generalized Linear Models (GLMs). Locally optimal designs are addressed with Second Order Cone Programming (SOCP) and Mixed Integer Second Order Cone Programming (MISOCP) formulations. The formulations are extended for scenarios of parametric uncertainty employing the Bayesian framework for \emph{log det} $D-$optimality criterion. A quasi Monte-Carlo sampling procedure based on the Hammersley sequence is used for integrating the optimality criterion in the parametric region. The problems are solved in \texttt{GAMS} environment using \texttt{CPLEX} solver. We demonstrate the application of the algorithm with the logistic, probit and complementary log-log models and consider full and fractional factorial designs.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Description: Let G be a directed acyclic graph with n arcs, a source s and a sink t. We introduce the cone K of flow matrices, which is a polyhedral cone generated by the matrices $\vec{1}_P\vec{1}_P^T\in\RR^{n\times n}$, where $\vec{1}_P\in\RR^n$ is the incidence vector of the (s,t)-path P. We show that several hard flow (or path) optimization problems, that cannot be solved by using the standard arc-representation of a flow, reduce to a linear optimization problem over $\mathcal{K}$. This cone is intractable: we prove that the membership problem associated to $\mathcal{K}$ is NP-complete. However, the affine hull of this cone admits a nice description, and we give an algorithm which computes in polynomial-time the decomposition of a matrix $X\in \operatorname{span} \mathcal{K}$ as a linear combination of some $\vec{1}_P\vec{1}_P^T$'s. Then, we provide two convergent approximation hierarchies, one of them based on a completely positive representation of~K. We illustrate this approach by computing bounds for the quadratic shortest path problem, as well as a maximum flow problem with pairwise arc-capacities.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: An algorithm based on a delayed constraint generation method for solving semi-infinite programs for constructing minimax optimal designs for nonlinear models is proposed. The outer optimization level of the minimax optimization problem is solved using a semidefinite programming based approach that requires the design space be discretized. A nonlinear programming solver is then used to solve the inner program to determine the combination of the parameters that yields the worst-case value of the design criterion. The proposed algorithm is applied to find minimax optimal designs for the logistic model, the flexible 4-parameter Hill homoscedastic model and the general nth order consecutive reaction model, and shows that it (i) produces designs that compare well with minimax $D-$optimal designs obtained from semi-infinite programming method in the literature; (ii) can be applied to semidefinite representable optimality criteria, that include the common A-, E-,G-, I- and D-optimality criteria; (iii) can tackle design problems with arbitrary linear constraints on the weights; and (iv) is fast and relatively easy to use.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...