Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-0629
    Keywords: Key words: chronosequence; light interception; nutrient-use efficiency; productivity; montane tropical forest; soil respiration.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT We tested the hypothesis that plants adjust to nutrient availability by altering carbon allocation patterns and nutrient-use efficiency (NUE = net primary production [NPP] per unit nutrient uptake), but are constrained by a trade-off between NUE and light-use efficiency (ε= NPP per unit intercepted light). NPP, NUE and ε were measured in montane Metrosideros polymorpha forest across a 4.1 x 106 yr space for time substitution chronosequence in which available soil N and P pools change with site age. Although the range of N and P availability across sites was broad, there was little difference in NPP between sites, and in contrast to theories of carbon allocation relative to limiting resources, we found no consistent relationships in production allocation to leaves, fine roots or wood. However, canopy nutrient pools and fluxes were correlated with the mass of fine roots per unit soil volume and there was a weak but positive correlation of NPP with LAI. Patterns of ε and NUE across the soil developmental sequence were opposite to each other. ε increased as nutrient availability and nutrient turnover increased, while NUE decreased in response to the same influences but reached its highest values where either N or P availability and turnover of both N and P were low. A negative correlation between ε and NUE supports the hypothesis that a trade-off exists between ε and leaf characteristics affecting NUE.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Carbon isotope composition ; Leaf area index ; Nitrogen-use efficiency ; Phosphorus-use efficiency ; Specific leaf mass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to 1800 mm annual precipitation. Koa stands along the gradient had basal area ranging from 8 to 42 m2/ha, LAI ranging from 1.4 to 5.4, and wood increment ranging from 0.7 to 7.1 tonnes/ha/year. N, P, and K contents by weight of sun leaves (phyllodes) were negatively correlated with specific leaf mass (SLM, g m-2) across sites; on a leaf area basis, N increased whereas P and K decreased with SLM. LAI, aboveground woody biomass increment, and production per unit leaf area (E) increased as phyllode δ13C became more negative. The δ13C data suggested that intrinsic water-use efficiency (ratio of assimilation to conductance) increased as water availability decreased. In five of the six sites, phyllode P contents increased as LAI increased, but biomass increment and E were not correlated with phyllode nutrient contents, suggesting that productivity was limited more by water than by nutrient availability. Because vapor pressure deficits increased with decreasing elevation, actual water-use efficiency (ratio of assimilation to transpiration) was lower at drier, low-elevation sites. There was a trade-off between intrinsic water-use efficiency and production per unit of canopy N or P across the gradient. In summary, koa responds to water limitation both by reducing stand LAI and by adjusting gas exchange, which results in increased intrinsic water-use efficiency but decreased E.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 121 (1999), S. 458-466 
    ISSN: 1432-1939
    Keywords: Key words Forest productivity ; Koa ; Hawaii mountain forests ; Water supply ; Carbon isotope discrimination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We studied changes in stand structure, productivity, canopy development, growth efficiency, and intrinsic water use efficiency (WUE=photosynthesis/stomatal conductance) of the native tree koa (Acacia koa) across a gradient of decreasing rainfall (2600–700 mm) with increasing elevation (700–2000 m) on the island of Hawaii. The stands were located on organic soils on either smooth (pahoehoe) or rough (aa) lava flows. In the greenhouse, we also examined growth and WUE responses to different water regimes of koa seedlings grown from seeds collected in the study area. We tested the hypotheses that (1) stand basal area, aboveground net primary productivity (ANPP), leaf area index (LAI), and growth per unit leaf area decreased with decreasing rainfall, (2) WUE increased with decreasing rainfall or water supply, and (3) WUE responses were caused by stomatal limitation rather than by nutrient limitations to photosynthesis. The carbon isotope composition of phyllode tissues (δ13C) was examined as an integrated measure of WUE. Basal area and LAI of koa stands on both pahoehoe and aa lava flows, and ANPP on aa lava flows decreased with elevation. Basal area, LAI, and ANPP of koa in mixed stands with the exotic tropical ash (Fraxinus udhei) were lower compared to single-species koa stands at similar elevations. Along the gradient, phyllode δ13C (and therefore WUE) increased with elevation from –30.2 to –26.8‰. Koa in mixed stands exhibited higher (less negative) δ13C than in single-species stands suggesting that koa and tropical ash competed for water. In the greenhouse, we observed the same trend observed in the field, as phyllode δ13C increased from –27.7 to –24‰ as water supply decreased. Instantaneous gas exchange measurements in the greenhouse showed an inverse correlation of both maximum (morning) photosynthesis (A) and conductance (g) with δ13C values and, also, a good agreement between instantaneous (A/g) and integrated measures of WUE. Phyllode δ13C was not correlated with foliar concentrations of N or other nutrients in either the field or the greenhouse, indicating that differences in δ13C were caused by stomatal limitation rather than by nutrient-related changes in photosynthetic capacity. This study provided evidence that long-term structural and growth adjustments as well as changes in WUE are important mechanisms of koa response to water limitation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 29 (1995), S. 223-235 
    ISSN: 1573-515X
    Keywords: chronosequence ; montane tropical forest ; nitrogen ; nutrient limitation ; phosphorus ; productivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We tested the hypothesis that P was the nutrient limiting net primary production of a nativeMetrosideros polymorpha forest on a highly weathered montane tropical soil in Hawaii. A factorial experiment used all combinations of three fertilizer treatments: nitrogen (N), phosphorus (P) and a mix of other essential nutrients (OE), consisting primarily of mineral derived cations and excluding N and P. P addition, but not N or OE, increased leaf area index within 12 months, foliar P concentration measured at 18 months, and stem diameter increment within 18 months. Stem growth at 18 months was even greater when trees fertilized with P also received the OE treatment. N and P additions increased leaf litterfall and N and P in combination further increased litterfall. The sequence of responses suggests that increased available P promoted an increase in photosynthetic area which led to increased wood production. P was the essential element most limiting to primary production on old volcanic soil in contrast to the N limitation found on young volcanic soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9680
    Keywords: Acacia koa ; allometric equations ; canopy analysis ; cattle grazing ; LAI-2000
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tree growth and competition with other vegetation are strongly affected by leaf area, which can be modified by livestock browsing in silvopastoral systems. We studied the relationship of leaf area to stem diameter and sapwood area of koa (Acacia koa), a valuable hardwood tree species native to Hawaii. Because browsing alters allometric relationships, we compared harvest data with two non-destructive optical techniques (LAI-2000 canopy analyzer and photographic estimation of projected crown area). Destructive harvests of 30 trees showed that leaf area was equally well correlated with the diameter at breast height (dbh) or sapwood area of trees ranging from 2 to 16 cm in diameter, 1.3 m above ground level. Both optical techniques correlated with the leaf areas obtained by destructive analysis, but the photographic estimation of projected crown area provided more reliable estimates than the canopy analyzer. The photographic method based on projected crown area provided reliable estimates of leaf area removal within the browse zone (less than 2 m height). this method provides a simple, low-cost means of obtaining non-destructive estimates of changes in leaf area in isolated trees.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...