Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Blood-brain barrier ; Dye-protein tracers ; Pathophysiology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Sodium fluorescein and Evans Blue, commonly used tracers in the study of blood-brain barrier disturbances, revealed considerable differences in their respective protein binding capacity in the plasma, passage through the barrier and in the rate of their elimination from the brain parenchyma. 2. In the plasma a considerable portion of the sodium fluorescein remains free and behaves like a micromolecular barrier tracer. On the other hand, almost complete binding of the Evans Blue to albumin confers to it properties of a protein tracer. 3. Following the extravasation of the tracers, the sodium fluorescein is relatively soon eliminated, whereas Evans Blue remains in the cellular elements of the brain parenchyma for a considerable time, although the protein moiety of the tracer is removed much sooner from the cytoplasm of glial cells, presumably by the lysosomal digestion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Neuronal activity ; Ischemia ; Hippocampus ; Gerbil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Spontaneous neuronal activity was recorded in the cerebral cortex and the CA1 sector of the hippocampus in gerbils during and after 5-min ischemia, produced by bilateral clamping of the common carotid arteries. It was found that spontaneous activity in both cortical and CA1 neurons ceased within 60 s after the onset of ischemia and that it began to reappear 10–20 min after the recirculation. During the next 24 h most CA1 neurons which were recorded showed hyperactivity. This was evident primarily by an increase in spike discharges, whereas recordings from the cerebral cortex were within the preocclusion ranges. On the 2nd day after ischemia, functioning CA1 neurons could not be found, as if they were in a state of functional death, although histological sections showed a general preservation of their cellular structure at that time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Blood-brain barrier ; Cerebral blood flow ; Glucose utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Changes in morphology, behavior of the blood-brain barrier (BBB), regional cerebral blood flow (rCBF), and local cerebral glucose utilization (LCGU) were assessed and correlated in Mongolian gerbils following 5 min cerebral ischemia, produced by bilateral clamping of the common carotid arteries. The morphological changes were confined to the hippocampus and revealed a conspicuously delayed destruction of the CA1 neurons, occurring after 3 days. Following release of carotid occlusions, there were two separate openings of the BBB. One, occurring shortly after recirculation, was associated with focal hyperemia in the cerebral cortex, hippocampus and basal ganglia; the second opening was observed after several days and was associated with severe neuronal destruction in the CA1 sector. Correlation of quantitative and qualitative rCBF assays with14C-deoxyglucose autoradiographic observations indicated an uncoupling between blood flow and glucose metabolism, observed in the hippocampus at 10 min after recirculation. The described changes provide a further insight into the post-ischemic events which determine the outcome of ischemic injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...