Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (8)
  • micrometeorology  (3)
  • slash pine  (3)
  • Ammonia loss  (2)
  • 1
    ISSN: 1573-0867
    Keywords: Ammonia loss ; denitrification ; nitrogen balance ; algal growth ; transfer processes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Losses of nitrogen were investigated after applications of ammonium bicarbonate and urea to flooded rice at transplanting. Ammonia (NH3) volatilization was determined by direct micrometeorological methods, and total loss of fertilizer nitrogen (N) was measured by15N balance. All the loss appeared to be in gaseous forms, since there was no evidence of leaching and runoff was prevented. The difference between N loss and NH3 loss was thus assumed to be denitrification loss. Both NH3 volatilization and denitrification losses were large, being 39% and 33%, respectively, of the ammonium bicarbonate N, and 30% and 33%, respectively, of the urea N applied by farmers' methods. Ammonia fluxes from the field fertilized with ammonium bicarbonate were very high for two days, and then declined rapidly as the NH3 source in the floodwater diminished. Moderate fluxes from the field fertilized with urea continued over 6 days, but calculations showed that NH3 transfer from floodwater to atmosphere was retarded during the middle period of the experiment, particularly on day 2 when a thick algal scum appeared on the water surface. The results indicate that this algal mass obstructed the transport of NH3 across the water-air interface until the scum was dispersed by wind action. Nevertheless, the prolonged NH3 losses on the urea treatment were due primarily to high floodwater pH values promoted by the strong algal growth during the daylight hours. Nitrogen-15 balance studies showed that incorporation of fertilizer into drained soil substantially increased recoveries of fertilizer N in rice plants and soil compared with incorporation of fertilizer in the presence of standing floodwater. Ammonia loss measurements on these treatments when urea was applied suggested that the improvement in fertilizer N efficiency was due mainly to reductions in NH3 loss.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 41 (1995), S. 93-100 
    ISSN: 1573-0867
    Keywords: fertilization ; P application method ; P rate ; slash pine ; stand growth response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fertilization at plantation establishment and later age is often required to maximize stand growth of slash pine (Pinus elliottii) in subtropical Australia. A field experiment was conducted to examine stand growth response of slash pine in the first 11.5 years of plantation following (1) initial fertilization at plantation establishment with phosphorus (P) at 11, 22, 45 and 90 kg P ha−1 which were either banded or broadcast in the presence or absence of basal fertilizers containing 50 kg nitrogen (N) ha−1, 50 kg potassium (K) ha−1 and 5 kg copper (Cu) ha−1 and (2) additional application of 40 kg P ha−1 at age 10 years. The initial P fertilization significantly increased the stand growth in the first 9.6 years. The P banded application was more effective in improving the stand growth than the P broadcast application. Application of the N, K and Cu basal fertilizers did not affect the stand growth. Overall, 53–73% of the variation in basal area and volume growth in the first 9.6 years was explained by the initial P fertilization, indicating that P deficiency was the major factor limiting the stand growth under the experimental conditions. Optimum plantation age, at which the maximum periodical annual increment (PAI) of basal area was obtained, increased from age 10.9 to 12 years when the initial P rate increased from 11 to 90 kg P ha−1. Application of additional 40 kg P ha−1 at age 10 years resulted in a further improvement in the stand growth at age 11.5 years. With 66% of the variation in basal area PAI between ages 9.6 and 11.5 years, 50% was explained by the initial P fertilization and 16% by the additional P applied at age 10 years. Similarly, 51% and 12% of the variation in volume PAI were attributed to the initial P fertilization and the additional P application, respectively. This highlights the need of refertilization with P on some established stands of slash pine at later ages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 41 (1995), S. 101-107 
    ISSN: 1573-0867
    Keywords: fertilization ; foliar nutrient concentration ; method of P application ; mineral nutrition ; P rate ; slash pine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the previous paper, we reported the stand growth of slash pine (Pinus elliottii) during the first 11.5 years of plantation in response to (1) initial fertilization at plantation establishment with P rates of 11, 22, 45 and 90 kg P ha−1 which were either banded or broadcast in the presence or absence of basal fertilizers containing 50 kg N ha−1, 50 kg K ha−1 and 5 kg Cu ha−1 and (2) application of additional 40 kg P ha−1 at age 10 years. Here we present the responses in foliar nutrient concentrations of slash pine in the first 11.5 years to the initial fertilization and the additional P applied at age 10 years. Foliar N and K concentrations in the first 9.6 years of plantation decreased with the initial P rate. Application of the basal fertilizers improved foliar Cu concentration. Foliar Ca and Mg concentrations increased linearly with the initial P rate. The initial fertilization did not affect foliar Mn concentration in the first 9.6 years. Foliar P concentration increased quadratically with the initial P rate, which accounted for 77–86% of the variation in foliar P concentration. Most of the explained variation in foliar nutrient concentrations was attributable to the plantation age except for foliar P concentration. In the case of foliar P concentration, 53% was explained by the initial P rate, 31% by the plantation age and 2% by the positive interaction between the initial P rate and the plantation age. Foliar P concentration of slash pine at age 11.5 years increased quadratically with the initial P rate and linearly with the additional 40 kg P ha−1 applied at age 10 years, accounting for 81% of the variation in the foliar P concentration. Foliar nutrient analysis indicated that P was the major limiting nutrient affecting the stand growth of slash pine in the first 11.5 years.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 41 (1995), S. 109-115 
    ISSN: 1573-0867
    Keywords: foliar phosphorus ; plantation age ; slash pine ; stand growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Foliar P concentration of slash pine was significantly related to the stand growth in the first 11.5 years. The relationship between foliar P concentration and total stand growth at foliar sampling improved as the plantation aged with coefficient of determination (R2) increasing from 0.14–0.15 at age 3.3 years to 0.56–0.65 at age 9.6 years. However, only 12–18% of the variation in total stand growth was explained by foliar P concentration at age 11.5 years when additional 40 kg P ha−1 was applied to the stands at age 10 years. This suggests that caution should be exercised in interpreting the foliar P concentrations of the established stands which had received application of P fertilizer just prior to foliar sampling. Periodic stand growth was more closely related to the foliar P concentration than total stand growth. Basal area and volume periodic annual increment (PAI) was better related to the foliar P concentration than height PAI. Optimum foliar P concentration, at which the maximum stand growth was obtained, was between 0.093% and 0.110%. The optimum foliar P concentration for height PAI immediately prior to foliar sampling decreased from 0.097% at age 3.3 years to 0.070% at age 9.6 years. Critical foliar P concentration at age 9.6 years, at which 90% of the maximum basal area growth was obtained, was between 0.066% and 0.070%. Both optimum and critical foliar P concentration might decrease as the plantation aged.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0867
    Keywords: direct-seeding ; nitrogen fertilizer ; micrometeorology ; gas exchange ; irrigation ; volatilization ; denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ammonia loss from urea applied to dry-seeded rice, determined using a micrometeorological technique, varied considerably depending on the time of application. Ammonia volatilization was negligible, before and after flooding, when urea was applied to the dry soil surface two days before permanent flood. Before flooding, the urea prills remained undissolved and urea hydrolysis could not proceed. Thus there was no source of fertilizerderived ammonia for volatilization to occur. Upon flooding, the urea prills were washed into cracks in the soil which subsequently closed. Therefore the movement of soluble nitrogen into the floodwater was prevented, and again there was no ammonia source for the volatilization process. When urea was broadcast into the floodwater a few days after permanent flood, ammonia losses were high and varied from 11–21% of the nitrogen applied. These losses were associated with high floodwater pHs and high wind speeds near the water surface. However, when urea was applied into the floodwater at panicle initiation, ammonia losses were low (3–8% of the applied nitrogen). At this stage of growth the plant canopy shaded the floodwater, inhibiting algal photosynthesis and consequent pH elevation, thus resulting in low ammonia gas concentrations at the floodwater surface. In addition, the plant canopy restricted air movement at the water surface, thereby reducing ammonia transport away from the air-water interface. These findings provide basic information required for improving current fertilizer management practices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 16 (1988), S. 97-107 
    ISSN: 1573-0867
    Keywords: nitrogen loss ; volatilization ; micrometeorology ; denitrification ; gas exchange ; lowland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper reports a study on the effects of water depth in modifying rates of ammonia emission and total nitrogen loss from flooded rice fields after fertilization with urea. Ammonia loss was determined by the mass balance micrometeorological method and total nitrogen loss by15N balance. Initially ammonia was lost at a faster rate from the shallow (0.05 m) than from the deep (0.14 m) floodwater; this was due to higher ammoniacal nitrogen concentrations and higher temperatures in the shallow water. Emission rates were more nearly comparable later in the experiment, but overall, 26% of the applied nitrogen was lost as ammonia from the shallow pond and only 18% from the deep pond. Even though changes in water depth markedly affected ammonia emission rates and the amounts of ammonia lost, they did not significantly affect total nitrogen loss. The results suggest that management practices based only on changes in water depth may not result in increased efficiency of fertilizer nitrogen for flooded rice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 6 (1988), S. 133-147 
    ISSN: 1573-0662
    Keywords: Ammonia loss ; energy balance ; micrometeorology ; water-air transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Vertical flux densities of ammonia, water vapour and sensible heat were measured over a flooded rice field in China following the application of ammonium bicarbonate fertilizer. Aqueous and gaseous phase transfer resistances for ammonia were deduced from these measurements. The aqueous phase resistance was maximal in the morning and least in the afternoon. Stable stratification of the floodwater immediately adjacent to the air-water interface was observed during the morning when evaporation rates were low, and may be responsible for inhibiting the transfer of ammonia to the atmosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 42 (1991), S. 637-642 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: The long-term corrosion rate of passive iron in anaerobic alcaline solutionsGas generation is an important issue in safety assessments of low and intermediate level radioactive repositories. In this connection the hydrogen production from corrosion of passive iron in saturated calcium hydroxide, in dilute alkali hydroxide and cement porewater solutions has been determined. The measurements were performed manometrically using fusion sealed glass cells, the measurement periods being between 275 and 560 days.In 0.1 M and 0.04 M alkali hydroxide solutions the initial hydrogen generation rate was 12 mmol/m2yr corresponding to a linear corrosion rate of 64 nm/yr. The reaction rate decreases with time. The smallest value obtained after 330 days is 0.3 mmol/m2yr corresponding to 1.5 nm/yr.The influence on iron of the saturated calcium hydroxide solution and the calcic porewater solutions differs from that of the alkali hydroxide solutions. At pH 12.5 the hydrogen generation rate remains practically constant up to breaking off the experiment, the value being about 1 mmol/m2yr corresponding to 5 nm/yr.
    Notes: Im Zusammenhang mit der Gasentwicklung in einem Endlager für schwach- und mittelradioaktive Abfälle ist die Wasserstoffentwicklung am passiven Eisen in verdünnten Alkalihydroxidlösungen, in gesättigter Calciumhydroxidlösung und in synthetischen Zementporenwässern bestimmt worden. Die Messung erfolgte manometrisch in zugeschmolzenen Glaszellen; die Meßzeiten lagen zwischen 275 und 560 Tagen.In 0,1 und 0,04 M Alkalihydroxidlösungen beträgt die anfängliche Wasserstoffbildungsrate 12 mmol/m2a (entsprechend einem Materialabtrag von 64 nm/a). Korrosionsgeschwindigkeiten in diesem Bereich wurden von anderen Autoren auch elektrochemisch gemessen. Die Reaktionsgeschwindigkeit nimmt mit der Zeit ab. Der kleinste gemessene Wert liegt nach 330 Tagen bei 0,3 mmol/m2a (1,5 nm/a).Gesättigte Calciumhydroxidlösung und die calciumhaltigen Zementporenwässer unterscheiden sich in ihrer Einwirkung auf das Eisen von den Alkalihydroxidlösungen. Bei pH 12,5 ist die Wasserstoffbildungsrate mit etwa 1 mmol/m2a (5 nm/a) bis zum Versuchsabbruch praktisch konstant.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 15 (1981), S. 867-878 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Mechanisms of corrosion at the areas of contact between screw heads and plate holes were investigated using electrochemical potential recording techniques. Static crevice corrosion was studied with plates and screws in isotonic and hypertonic saline solutions (0.9 to 7.2% NaCl). Fretting corrosion was studied in vitro with plates screwed to tubular bone analogs which were subjected to cyclic axial loads, and was studied in vivo with plates screwed on the tibia of sheep. Static tests showed that crevice corrosion does not occur in isotonic saline for periods up to one year, but can occur in hypertonic saline solutions. Dynamic loading tests demonstrated immediate potential changes which were related to the magnitude of the applied load, indicating fretting corrosion due to motion between screw head and plate, both in vitro and in vivo. A mechanism for screw-plate relative motion is proposed. It is hypothesized that corrosion seen in clinically retrieved implants due to fretting corrosion which predisposes the contact area to crevice corrosion attack.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Titanium (Ti) surface roughness affects proliferation, differentiation, and matrix production of MG-63 osteoblast-like cells. Cytokines and growth factors produced in the milieu surrounding an implant may also be influenced by its surface, thereby modulating the healing process. This study examined the effect of surface roughness on the production of two factors known to have potent effects on bone, prostaglandin E2 (PGE2) and transforming growth factor β1 (TGF-β1). MG-63 cells were cultured on Ti disks of varying roughness. The surfaces were ranked from smoothest to roughest: electropolished (EP), pretreated with hydrofluoric acid-nitric acid (PT), fine sand-blasted, etched with HCl and H2SO4, and washed (EA), coarse sand-blasted, etched with HCl and H2SO4, and washed (CA), and Ti plasma-sprayed (TPS). Cells were cultured in 24-well polystyrene (plastic) dishes as controls and to determine when confluence was achieved. Media were collected and cell number determined 24 h postconfluence. PGE2 and TGF-β1 levels in the conditioned media were determined using commercial radioimmunoassay and enzyme-linked immunosorbent assay kits, respectively. There was an inverse relationship between cell number and Ti surface roughness. Total PGE2 content in the media of cultures grown on the three roughest surfaces (FA, CA, and TPS) was significantly increased 1.5-4.0 times over that found in media of cultures grown on plastic or smooth surfaces. When PGE2 production was expressed per cell number, CA and TPS cultures exhibited six- to eightfold increases compared to cultures on plastic and smooth surfaces. There was a direct relationship between TGF-β1 production and surface roughness, both in terms of total TGF-β1 per culture and when normalized for cell number. TGF-β1 production on rough surfaces (CA and TPS) was three to five times higher than on plastic. These studies indicate that substrate surface roughness affects cytokine and growth factor production by MG-63 cells, suggesting that surface roughness may modulate the activity of cells interacting with an implant, and thereby affect tissue healing and implant success. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...