Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1437-9813
    Keywords: Neuropeptides ; Coexistence ; Hirschsprung's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The distributions of nerve fibres immunoreactive for the peptides calcitonin gene-related peptide (CGRP), enkephalin (ENK), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal peptide (VIP) and the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) were studied in healthy colon and samples of ganglionic and aganglionic colon from cases of proven Hirschsprung's disease. Studies of coexistence of reactivities in nerve fibres were performed to predict the possible origins of fibres that are found in the aganglionic bowel, e. g., from sensory or sympathetic ganglia. The muscularis externa of the ganglionic colon contained many nerve fibres immunoreactive for ENK, SP, and VIP, fewer for NPY, and only rare fibres reactive for CGRP, SOM, or TH. In ganglionic colon reactivities for SP and ENK coexisted in nerve fibres in the muscularis externa but in aganglionic colon no ENK immunoreactivity was found and most SP fibres were double-labelled with CGRP reactivity, indicating their probable sensory nature. Abnormally increased numbers of somatostatin-reactive fibres and noradrenergic fibres (marked by TH) were noted in the external muscle, but no coexistence was seen between these reactivities and only a small proportion of the noradrenergic fibres in the muscle showed NPY reactivity although almost all around blood vessels did. Many fibres in the diseased segment had coexistence of NPY and VIP reactivities; these may arise from more orally located intrinsic cell bodies or from pelvic parasympathetic ganglia. In the mucosa of aganglionic colon there was a striking lack of SP-reactive fibres while other fibre types were often normal in number. It is concluded that nerve fibres from sensory ganglia, sympathetic ganglia, nerve cells located more oral in the ganglionated part, and possibly from pelvic parasympathetic ganglia invade the aganglionic bowel in Hirschsprung's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 314 (1970), S. 1-13 
    ISSN: 1432-2013
    Keywords: Smooth Muscle ; Neuromuscular Transmission ; Electrophysiology ; Autonomic Nerves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intracellular microelectrodes were used to analyse the excitatory input to single cells of the mouse vas deferens. Excitatory junction potentials (EJP's) were evoked by both orthodromic and antidromic impulses in terminal axons lying within the musculature of the vas deferens, indicating that transmitter is released from the length of the terminal axon not just from the axon termination. The amplitude of the EJP was altered by altering the strength of stimulation. By using this variation, it was found that 15–22 nerve fibres gave a detectable contribution to the amplitude of the EJP in a single cell. The maximum amplitude of the EJP was 45 mV and the maximum depolarization caused by transmission from a single axon was 5 mV. By depolarizing the whole tissue with noradrenaline, the reversal potential for the EJP was found to be −20 to −15 mV. The EJP was not reversed when a single cell was depolarized with an intracellular current pulse. Extracellular electrodes failed to record any reversal of the EJP, corresponding to current sinks. It is concluded that the EJP in a single cell arises both from the action of transmitter, released from terminal varicosities, on its membrane and from potential changes electrically coupled from adjacent cells via low resistance connections between the smooth muscle cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-2013
    Keywords: Potassium channels ; Enteric nervous system ; After-hyperpolarization ; Toxins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Myenteric neurons of guinea-pig ileum were studied with intracellular microelectrodes. The specific toxins charybdotoxin, iberiotoxin and apamin were used to characterize the prolonged after-hyperpolarizations of AH neurons in this preparation. Charybdotoxin and iberiotoxin blocked prolonged after-hyperpolarizations in 23 of 24 AH neurons, but apamin had no effect on 5 of 5 AH neurons. Abolition of the after-hyperpolarizations was accompanied by depolarization and increases in input resistances of those AH neurons affected, but the shapes of action potentials were unchanged. The excitability of the AH neurons was enhanced as shown by an increase in the number of action potentials evoked by a 500-ms depolarizing current pulse or by a train of 15 ms depolarizing current pulses (10Hz). The other class of myenteric neurons, S neurons, was also investigated. The 19 S neurons studied fired action potentials only at the start of a 500 ms depolarization, but the toxins had no effect on this behaviour or on their other properties. Intracellular injection of Neurobiotin into the neurons studied and subsequent immunohistochemical staining to localise the calcium-binding protein, calretinin, indicated that all major classes of S neurons were included in the sample. Thus, the prolonged after-hyperpolarizations in AH neurons may be due to opening of a large-conductance (BK) calcium-dependent potassium channel, but similar channels play little or no role in regulation of the excitability of S neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 538-544 
    ISSN: 1432-1912
    Keywords: Pituitary adenylyl cyclase activating peptide (PACAP) ; Taenia caeci ; Electrophysiology Enteric nervous system ; Inhibitory neurotransmitter ; Smooth muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The actions of pituitary adenylyl cyclase activating peptide (PACAP) on membrane potential and conductance were investigated in the taenia of the guinea-pig caecum. The possible role of PACAP in inhibitory transmission was also investigated. Membrane potentials of smooth muscle cells were measured by intracellular microelectrodes, in the presence of hyoscine and nifidepine (both 10−6M). To determine conductance changes, current was passed from external plate electrodes using the technique of Abe and Tomita (1968). PACAP-27 caused a concentration dependent hyperpolarization of the muscle with a maximum of 12–15 mV at 10−6M. The hyperpolarization caused by PACAP was associated with a substantial increase in membrane conductance. The hyperpolarization was abolished by apamin (10−6M), a blocker of small conductance, calcium-dependent, potassium channels, and was reduced to about 50% by suramin (10−4M), which is an antagonist of P2 receptors for purines. The hyperpolarization was not reduced by tetrodotoxin (2 × 10−6M), suggesting PACAP acts directly on the muscle. With continued exposure to PACAP, the hyperpolarization decayed back to resting membrane potential after several minutes, possibly due to receptor desensitization. Inhibitory junction potentials (IJPs) were markedly reduced in amplitude in the period of presumed receptor desensitization to PACAP, were abolished by tetrodotoxin, but were not affected by suramin. Apamin abolished the UP and revealed a small excitatory junction potential. This study implies that PACAP released from nerve fibres in the taenia caeci hyperpolarizes the muscle via an opening of apamin-sensitive potassium channels. The action is probably through type I PACAP receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 538-544 
    ISSN: 1432-1912
    Keywords: Key words Pituitary adenylyl cyclase activating peptide (PACAP) ; Taenia caeci ; Electrophysiology ; Enteric nervous system ; Inhibitory neurotransmitter ; Smooth muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The actions of pituitary adenylyl cyclase activating peptide (PACAP) on membrane potential and conductance were investigated in the taenia of the guinea-pig caecum. The possible role of PACAP in inhibitory transmission was also investigated. Membrane potentials of smooth muscle cells were measured by intracellular microelectrodes, in the presence of hyoscine and nifidepine (both 10-6M). To determine conductance changes, current was passed from external plate electrodes using the technique of Abe and Tomita (1968). PACAP-27 caused a concentration dependent hyperpolarization of the muscle with a maximum of 12–15 mV at 10-6M. The hyperpolarization caused by PACAP was associated with a substantial increase in membrane conductance. The hyperpolarization was abolished by apamin (10-6M), a blocker of small conductance, calcium-dependent, potassium channels, and was reduced to about 50% by suramin (10-4M), which is an antagonist of P2 receptors for purines. The hyperpolarization was not reduced by tetrodotoxin (2×10-6M), suggesting PACAP acts directly on the muscle. With continued exposure to PACAP, the hyperpolarization decayed back to resting membrane potential after several minutes, possibly due to receptor desensitization. Inhibitory junction potentials (IJPs) were markedly reduced in amplitude in the period of presumed receptor desensitization to PACAP, were abolished by tetrodotoxin, but were not affected by suramin. Apamin abolished the IJP and revealed a small excitatory junction potential. This study implies that PACAP released from nerve fibres in the taeniacaeci hyperpolarizes the muscle via an opening of apamin-sensitive potassium channels. The action is probably through type I PACAP receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 333 (1986), S. 393-399 
    ISSN: 1432-1912
    Keywords: Enteric neurons ; Mucosal transport ; Noradrenaline ; Somatostatin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Noradrenaline (NA) and somatostatin (SOM) stimulate intestinal water and ion absorption and are found in mucosal nerve fibres and nerve terminals in submucous ganglia of the guinea-pig small intestine. As the main projection of submucous neurons is to the mucosa, NA and SOM might alter mucosal transport either by a direct effect on the epithelium or indirectly, by affecting submucous neurons. In this study these two possible sites of action of NA and SOM have been investigated in mucosa-submucosa preparations of guinea-pig ileum. In addition, the actions of NA and SOM on the secretory responses caused by stimulation of different populations of submucous neurons have been studied. The stimulants of secretion used were a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10−5 M), 5-hydroxytryptamine (5-HT, 10−7 M) and electrical field stimulation (EFS), which activate cholinergic, noncholinergic and mixed populations of submucous secretomotor neurons, respectively. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net active ion transport across the tissue. NA (≥10−8 M) and SOM (〉10−10 M) each caused a decrease in I sc, indicating a net increase in ion absorption. The NA response was abolished and the magnitude of the SOM response was reduced to 20% by tetrodotoxin (10−7 M). DMPP, 5-HT and EFS each stimulated nerves that increased I sc and each of these responses was significantly diminished by NA and SOM; for both NA and SOM the decrease in the DMPP response was significantly greater than the decrease observed in the response to carbachol (10−6 M). Phentolamine (10−6 M) abolished all of the effects of NA but caused no change in the SOM effects. These studies have shown that NA and SOM cause similar changes in net ion transport, that their actions are primarily on submucous secretomotor neurons and that NA and SOM can diminish the responses to stimulation of both cholinergic and noncholinergic submucous neurons. In this tissue it is also known that SOM coexists with NA in noradrenergic nerve terminals in the submucosa. However, when applied together, NA and SOM caused no greater decrement in the carbachol and 5-HT responses than would be predicted by adding the separate effects of NA and SOM. Hence there was no obvious interaction between NA and SOM effects on mucosal transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Immunoreactivity for the calicium binding protein, calbinding D28k has been localized in enterochromaffin-like (ECL) cells of the human stomach. The reactivity was observed with three different antisera, raised against bovine brain, primate brain, and chicken intestinal calbindin. The ECL cells were closed endocrine cells located at the bases of the oxyntic glands. They were not found in other regions of the stomach. No other gastric endocrine cells were reactive with these antisera.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 28 (1971), S. 324-336 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The localisation of monoamine oxidase (MAO) was examined in lamina preparations of the myenteric plexus of guinea-pig stomach, small intestine and proximal colon and in the submucous plexus of the small intestine. MAO is associated with most neurones in these parts of the enteric plexuses. In the myenteric plexus of the small intestine, cells corresponding to Dogiel's type II were prominent whereas type I cells appeared less reactive for MAO. However, both type I and type II cells of the proximal colon were heavily stained. In the stomach and in the submucous plexus of the small intestine, most positive cells were type II. There were many small positively stained cells throughout the myenteric plexus. Interstitial cells were lightly stained. The intensity of stain in many enteric neurones was similar to that of cells of the sympathetic ganglia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 21 (1970), S. 295-306 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary A detailed study of the origin and distribution of sympathetic fibres in the distal colon of the guinea-pig has been made using the fluorescent histochemical method for localizing catecholamines. The extrinsic adrenergic fibres of the colonie sympathetic nerves follow the inferior mesenteric artery and its branches to the colon. Some of the extrinsic adrenergic fibres are associated with the parasympathetic fibres of the pelvic nerves near the colon. Complete adrenergic denervation follows the removal of the inferior mesenteric ganglion or the destruction of the nerves running with the inferior mesenteric artery. No fluorescent fibres, other than those associated with blood vessels, were observed in air-dried stretch preparations of the isolated longitudinal muscle. However, a substantial number of varicose, terminal fibres, not associated with blood vessels, were observed in the circular muscle. Some varicose fibres, apart from those associated with ganglion cells, were observed in the myenteric plexus. These fibres were seen in the bundles of nerves running between the nodes of the plexus and also as single fibres which branched from the plexus to end in areas free of ganglion cells. Three plexuses of adrenergic nerve fibres have been distinguished in the submucosa: a dense plexus of terminal fibres innervating both the veins and arteries; a plexus consisting of innervated nodes of ganglion cells, connected by bundles of fluorescent and non-fluorescent nerves; and a plexus of varicose and non-varicose fibres, which is not associated with ganglion cells. Some groups of ganglion cells in the submucosa were without adrenergic innervation. A plexus of varicose fibres forms a meshwork in the lamina propria of the mucosa. The muscularis mucosae is sparsely innervated. Most of the blood vessels in the mucosa are not associated with adrenergic fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The localization of nitric oxide synthase (NOS) in vascular endothelial cells of submucosal blood vessels from the guinea-pig ileum was examined using NADPH diaphorase histochemistry at the light microscopic level, and endothelial NOS immunohistochemistry at the light and electron microscopic level. The pattern of staining observed following NADPH diaphorase histochemistry and endothelial NOS immunohistochemistry was identical. Endothelial cells of the arterioles, capillaries and venules showed small patches of intense, perinuclear staining. Under the electron microscope, endothelial NOS immunoreactivity was found predominantly in association with the Golgi apparatus and with the membranes of some vesicles. Small regions of the plasma membrane and the rough endoplasmic reticulum also showed some immunoreactivity. The presence of NOS in the Golgi apparatus and in vesicles raises the possibility that NOS may be exteriorized by endothelial cells, and hence that nitric oxide is synthesized extracellularly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...