Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 154 (1990), S. 249-252 
    ISSN: 1432-072X
    Keywords: Lactic acid bacteria ; Lactobacillus casei ; Bacteriocin ; Extra- and intracellular polypeptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When grown in complex or synthetic media, Lactobacillus casei B 80 synthesizes a mitomycin C-inducible polypeptide with very specific bactericidal activity against the sensitive strain Lactobacillus casei B 109. The amount of secreted bacteriocin in the culture solution was low, about 1 mg/l. The bacteriocin which we called caseicin 80, was also detectable in cell extracts, although only 2% of the total activity was retained intracellularly. Caseicin 80 was concentrated by ultrafiltration and purified by cation exchange chromatography with Cellulose SE-23 and Superose. The molecular weight was in the range of M r=40,000–42,000 and the isoelectric point was pH 4.5.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung Während der aeroben Vergärung von Glucose wurde die Konzentration von Acetaldehyd im Gärmedium über den gesamten Gärablauf bei mehreren Stämmen von Saccharomyces cerevisiae verfolgt. Die Aldehydkonzentration weist bei Glucosekonzentrationen zwischen 5 und 20% zwei Maxima auf. Damit ist der Konzentrationsverlauf von Acetaldehyd aerob wesentlich anders als bei der anaeroben Gärung, mit nur einem meist niedrigen Maximum. 10-3 M Azid hemmt die Bildung von Acetaldehyd ganz oder weitgehend. Das deutet auf die Funktion bzw. Synthese der Cytochrome, die in Gegenwart von Sauerstoff offensichtlich auch bei hohen Glucosekonzentrationen nicht vollständig reprimiert werden. Der durch die Atmung bedingte Wasserstoffabfluß führt zu höheren Aldehydkonzentrationen. Der in der logarithmischen Wachstumsphase vorwiegend fermentative Stoffwechsel überlagert mit seiner starken Wasserstoffproduktion die Atmung, was zum Auftreten von zwei Aldehydmaxima führt. Die Regulation der Acetaldehydbildung während der aerohen Gärung wird eingehend diskutiert und zeigt, daß Acetaldehyd als Indicator für die Induktion und Funktion der Atmungsenzyme geeignet ist.
    Notes: Summary During fermentation of glucose by the yeast Saccharomyces cerevisiae small amounts of acetaldehyde are formed. Anaerobically, acetaldehyde accumulates in the medium, showing only one maximum of ca. 10–30 mg/l in the logarithmic growth phase. During aerobic fermentation, acetaldehyde is formed in higher amounts (160 mg/l) and two maxima are observed. Both maxima appear in glucose concentrations varying from 5–20%. The addition of azide, which inhibits respiration results in a loss of acetaldehyde production. Therefore it is assumed, that the enzymes of the respiratory chain are involved in the formation of acetaldehyde and that acetaldehyde production is caused by induction and function of cytochromes under the influence of oxygen. Various yeast strains differ in their ability of acetaldehyde production. The characteristic appearance of two aldehyde maxima is explained by exceeding hydrogen production in the logarithmic phase of growth, where the fermentation suppresses the influence of respiration on aldehyde production. The regulation of the formation of acetaldehyde during aerobic fermentation is thoroughly discussed showing that acetaldehyde can serve as an indicator for the activity of respiration enzymes in yeast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 87 (1972), S. 149-164 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung 1. Hefen der Gattung Saccharomyces setzen während und nach Beedigung der alkoholischen Gärung l-Äpfelsäure um, wobei die Umsetzung von etwa 5 bis zu 40% bei einzelnen Stämmen variiert. 2. Luftsauerstoff begünstigt die Säureumsetzung durch Förderung des Wachstums; denn es besteht eine Proportionalität zwischen Zellmasse und Äpfelsäureabbau. 3. Als Endprodukte des Äpfelsäuremetabolismus wurden bei ruhenden Hefezellen Kohlensäure und Äthanol nachgewiesen. Bilanzversuche ergaben, daß aus 1 Mol l-Äpfelsäure 2 Mole Kohlensäure und 1 Mol Äthanol gebildet werden. Das gleiche Ergebnis wurde bei entsprechenden Versuchen mit U-14C markierter l-Äpfelsäure erhalten. 4. Mit zellfreien Extrakten konnte l-Äpfelsäure decarboxyliert werden, wenn eine genügend große Proteinmenge verwendet und dem Reaktionsgemisch NAD (bzw. NADP) und Mn++ zugesetzt wurden. 5. Als Endprodukte waren, wie bei ruhenden Zellen, CO2 und Äthanol im molaren Verhältnis 2:1 nachzuweisen, wenn eine aktive Pyruvat-Decarboxylase in den Extrakten vorhanden war. Bei deren Fehlen kam es zur Bildung von Pyruvat. Versuche mit einem Zusatz von Semicarbazid ergaben, daß Oxalessigsäure nicht als Zwischenprodukt auftritt. 6. Die Versuchsergebnisse lassen darauf schließen, daß Hefen der Gattung Saccharomyces l-Äpfelsäure mit einem Malatenzym [l(-)-Malat: NAD(P) Oxidoreduktase, decarboxylierend (E.C. 1.1.1.38 oder 40)] zu Brenztraubensäure umsetzen, die unter Einwirkung von Pyruvat-Decarboxylase und Alkohol-Dehydrogenase CO2 und Äthanol ergibt.
    Notes: Summary 1. Yeasts of the genus Saccharomyces were found to decompose malic acid during and after the fermentation of sugar. The decomposition of malic acid is always incomplete and varies among the 300 strains investigated, the variation being ca. 5 to 40% of the acid in the medium. 2. The amount of acid decomposed is proportional to the cell mass formed, indicating thereby that aeration promotes the decomposition of malic acid. 3. Resting cells of S. cerevisiae metabolise malic acid to ethanol and CO2. Quantitative determinations of the fermentation balance and experiments with uniformly labelled malic acid confirmed that 2 moles of CO2 and 1 mole of ethanol are formed from every mole of malic acid decomposed. 4. Cell-free extracts that decarboxylate malic acid were prepared from S. cerevisiae. Because of the low activity of the enzyme a large amount of protein had to be used and the addition of NAD (or NADP) and Mn++ to the reaction mixture was essential. 5. Ethanol and carbon dioxide in a molar ratio of 1:2 were the end products of the reaction when the enzyme preparation contained pyruvate decarboxylase. An inactivation of this enzyme led to the formation of pyruvate from malate. Oxaloacetic acid could be excluded as an intermediate, as the oxidative decarboxylation of malate was not affected by the presence of semicarbazide. 6. The results indicate that S. cerevisiae decomposes malic acid to pyruvic acid by a malic enzyme [l(-)-malate: NAD(P) oxidoreductase, decarboxylating, E.C. 1.1.1.38 or 40). Thus pyruvate is converted to ethanol and CO2 by the successive actions of pyruvate decarboxylase and alcohol dehydrogenase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 82 (1972), S. 219-239 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung Von 78 verschiedenen Stämmen der Gattungen Pediococcus, Leuconostoc und Lactobacillus vermochten vier Stämme der Species L. plantarum und ein Stamm von L. brevis Weinsäure umzusetzen. Bei beiden Organismen ist das Weinsäure abbauende Enzymsystem induzierbar. Die Induktion wird bei L. plantarum durch Glucose, nicht aber durch das ebenfalls vergärbare Mannit gehemmt. Mit ruhenden Zellen und zellfreien Extrakten wurden die Endprodukte des anaeroben Weinsäureabbaus bestimmt. Infolge der Instabilität der Enzyme konnte nur mit Rohextrakten gearbeitet werden. Je Mol Weinsäure werden von L. plantarum 1,5 Mol CO2, 0,5 Mol Essigsäure und 0,5 Mol d,l-Milchsäure, von L. brevis 1,33 Mol CO2, 0,67 Mol Essigsäure und ca. 0,3 Mol Bernsteinsäure gebildet. Oxalessigsäure wurde bei beiden Organismen als Zwischenprodukt nachgewiesen. Die Umsetzung von Weinsäure durch zellfreie Rohextrakte wird durch NAD oder NADH2 gefördert; ein Überschuß von NADH2 verhindert oder verringert die CO2-Entwicklung und führt zur vermehrten Bildung von Milchsäure oder Bernsteinsäure. Zum Nachweis des Abbauweges wurde eine Reihe von möglichen Zwischenprodukten untersucht. Danach ergibt sich für den Abbau der Weinsäure durch das homofermentative Milchsäurebakterium L. plantarum folgender Reaktionsverlauf: Nach Dehydratisierung von Weinsäure zu Oxalessigsäure (Weinsäure-Dehydratase) wird diese quantitativ zu Brenztraubensäure decarboxyliert (Oxalessigsäure-Decarboxylase). Die Hälfte der Brenztraubensäure wird — wahrscheinlich durch das Pyruvat-Dehydrogenase-System — zu CO2 und Essigsäure oxydiert, die andere Hälfte der Brenztraubensäure wird zu Milchsäure (Lactat-Dehydrogenase) reduziert. Der Weinsäureabbau durch den heterofermentativen L. brevis zeigt folgenden Reaktionsverlauf: Die durch Dehydratisierung entstandene Oxalessigsäure wird zu zwei Drittel zu Pyruvat decarboxyliert (spontan oder Oxalessigsäure-Decarboxylase). Pyruvat wird quantitativ zu Essigsäure und CO2 oxydiert. Das restliche Drittel Oxalessigsäure wird über Äpfelsäure, Fumarsäure zu Bernsteinsäure reduziert. Das Weinsäure abbauende System des homofermentativen Stammes (L. plantarum) unterscheidet sich im Reaktionsablauf, in der Sauerstoffempfindlichkeit, der Einwirkung von 2-Mercapto-äthanol, dem Einfluß von Glucose, der Stereospezifität und dem pH-Optimum der zellfreien Extrakte von demjenigen des heterofermentativen L. brevis.
    Notes: Summary The decomposition of tartrate was only observed in four strains of Lactobacillus plantarum and one strain of L. brevis among 78 different strains of lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus. The enzyme decomposing tartrate is inducible in both organisms. In L. plantarum the induction is prevented by glucose but not by mannitol. The endproducts of the anaerobic metabolism of one mol of tartrate were 1.5 mol CO2, 0.5 mol acetic and 0.5 mol lactic acid with L. plantarum and 1.33 mol CO2, 0.67 mol acetic acid and 0.3 mol succinic acid with L. brevis when resting cells or cell free extracts were used. As the enzymes were very unstable, no substantial purification could be achieved; dialysis, gel chromatography or precipitation with ammonium sulphate led to rapid inactivation. Therefore crude extracts had to be used for the investigation of the enzymatic mechanism. NAD or NADH2 are essential for the decomposition of tartrate. However, a large surplus of NADH2 reduces or prevents the production of CO2 by cell free extracts and results in an increased formation of lactic or succinic acid, depending on the organism. Oxalacetic acid could be proven to be an intermediate metabolite. Using possible intermediates of the pathway of tartrate decomposition, the following sequences of reactions were demonstrated. In the homofermentative lactic acid bacterium L. plantarum tartrate is converted to oxalacetic acid (by tartrate dehydrase) which is decarboxylated to pyruvic acid (by oxalacetic decarboxylase). Half of the pyruvate is oxidised to CO2 and acetic acid (probably by the pyruvic-dehydrogenase-system), the other half of pyruvic acid is reduced to lactic acid (by lactate dehydrogenase). In the heterofermentative L. brevis tartrate is also converted to oxalacetic acid, but only two thirds of the oxalacetic acid are decarboxylated to pyruvic acid (spontaneously or by oxalacetic decarboxylase), the remaining third of oxalacetic acid is reduced to succinic acid via malic and fumaric acids. Pyruvic acid is completely oxidised to acetic acid and CO2. — The tartrate decomposing systems of the homofermentative strain (L. plantarum) and the heterofermentative strain (L. brevis) differ in the metabolic pathway, the inactivation by oxygen, the effect of 2-mercaptoethanol, the influence of glucose, the stereospecifity, and the pH-optimum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 116 (1978), S. 197-203 
    ISSN: 1432-072X
    Keywords: 2,3-Butanediol dehydrogenases ; Serratia marcescens ; Bacillus polymyxa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidized only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and reduction were pH 9 and pH 7, respectively. The optimum temperature was about 60°C. The molecular weight was 100000 to 107000. The K m-values were 3.3 mM for D(-)-butanediol, 6.25 mM for meso-butanediol, 0.53 mM for acetoin, 0.2 mM for NAD, 0.1 mM for NADH, 87 mM for diacetyl, 38 mM for 1,2-propanediol; 2,3-pentanedion was not a substrate for this enzyme. The L(+)-butanediol dehydrogenase from Serratia marcescens was purified 57-fold (specific activity 22.3). Besides NAD or NADH no cofactors were required. The optimum value for oxidation was about pH 9 and for reduction pH 4.5. The optimum temperature was 32–36°C. The molecular weight was 100000 to 107000. The K m-values were 5 mM for meso-butanediol, 10 mM for racemic butanediol, 6.45 for acetoin, 1 mM for NAD, 0.25 mM for NADH, 2.08 mM for diacetyl, 16.7 mM for 2,3-pentanedion and 11.8 mM for 1,2-propanediol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 357-361 
    ISSN: 1432-072X
    Keywords: Yeast ; Saccharomyces cerevisiae ; Killer toxin ; Extracellular glycoprotein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 37-41 
    ISSN: 1432-072X
    Keywords: Yeast ; Hexose transport ; Sugar ; Malate uptake ; 2,4-DNP ; Zygosaccharomyces bailii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 23 (1956), S. 400-412 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Zusammenfassung 1. Unter dem Einfluß von Penicillin bildet Bacterium vulgare (Proteus vulgaris) in einer einfachen serumfreien Nährlösung Kugelzellen, die in ihrer Gestalt von der Normalform der Bakterienzelle stark abweichen, aber in ihrer Entstehung und im Erscheinungsbild dem L-Phasenwachstum sehr ähneln. 2. Phasenkontrastmikroskopische Untersuchungen ergaben, daß die beobachteten Formen sich vom L-Phasenwachstum durch den Besitz von wahrscheinlich zwei Membranen unterscheiden. 3. Lebendzellzählungen und Trübungsmessungen führten zu dem Schluß, daß diese Kugelzellen nach der üblichen Definition weder lebensfähig sind, noch in ihrem Innern lebensfähige Keime enthalten, so daß sie als degenerative Stadien oder Involutionsformen bezeichnet werden können. Die Weiterentwicklung solcher Kulturen beim Überimpfen geht offenbar von unveränderten Bakterienzellen aus, wie nach Homogenisieren der Kulturen durch Keimzahlbestimmungen wahrscheinlich gemacht werden konnte. 4. Die Wachstumserscheinungen von Proteus in einfachen penicillinhaltigen Medien sind trotz Ähnlichkeit mit bakteriellen Wachstumserscheinungen und dem Vorhandensein oxydativer Stoffwechselvorgänge nur ein Degenerationsvorgang.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 89 (1973), S. 223-231 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung 1. Aus Saccharomyces cerevisiae St. 79 konnte durch Protamin-und Ammoniumsulfatfällung sowie durch Chromatographie an DEAE-Cellulose ein Malatenzym [l-Malat: NAD(P) Oxidoreduktase, decarboxylierend, E.C. 1.1.1.38 oder 40] angereichert und von Malat-Dehydrogenase (l-Malat: NAD Oxidoreduktase, E.C. 1.1.1.37) weitgehend abgetrennt werden. 2. Neben Mn++-Ionen benötigt das Malatenzym der Hefe NAD oder NADP, bei einem optimalen pH-Wert von 7,5. Es ist spezifisch für l-Malat, d-Malat wird nicht umgesetzt. Die Enzympräparate decarboxylierten Oxalessigsäure bei Abwesenheit von NAD. 3. Die K m Werte von Malatenzym sind für l-Malat 5 · 10-2 M, für NAD 5 · 10-4 M und für Mangan 1,4 · 10-4 M. 4. Ein Zusatz von Phosphoenolpyruvat ergab eine Aktivierung des Malatenzyms im Bereich niedriger Substratsättigung.
    Notes: Summary 1. A “malic” enzyme [l-malate: NAD(P)oxidoreductase, decarboxylating; E.C. 1.1.1.38 or 40] was isolated from Saccharomyces cerevisiae strain 79 by precipitation with protamine sulphate, precipitation with ammonium sulphate, and chromatography on DEAE-cellulose. The “malic” enzyme was partially separated from malate dehydrogenase (l-malate: NAD oxidoreductase E.C. 1.1.1.37). 2. The “malic” enzyme activity depended on the presence of Mn++-ions and reacted with NAD or NADP. The pH-optimum was pH 7.5. The enzyme preparations decarboxylated oxaloacetate in the absence of NAD; d-malate was not decomposed. 3. The K m values of the malic enzyme from this strain of S. cerevisiae were 5·10-2 M for l-malate, 5·10-4 M for NAD, and 1.4·10-4 for manganese. 4. Phosphoenolpyruvate activated the “malic” enzyme at low concentrations of the substrate, l-malate. Several other possible activators were found ineffective.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 131 (1982), S. 266-270 
    ISSN: 1432-072X
    Keywords: Malic acid ; Fermentation ; Saccharomyces bailii ; Malic enzyme ; Fumarase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. The main pathway of the anaerobic metabolism of l-malate in Saccharomyces bailii is catalyzed by a l-malic enzyme. 2. The enzyme was purified more than 300-fold. During the purification procedure fumarase and pyruvate decarboxylase were removed completely, and malate dehydrogenase and oxalacetate decarboxylase were removed to a very large extent. 3. Manganese ions are not required for the reaction of malic enzyme of Saccharomyces bailii, but the activity of the enzyme is increased by manganese. 4. The reaction of l-malic enzyme proceeds with the coenzymes NAD and (to a lesser extent) NADP. 5. The K m-values of the malic enzyme of Saccharomyces bailii were 10 mM for l-malate and 0.1 mM for NAD. 6. A model based on the activity and substrate affinity of malic enzyme, the intracellular concentration of malate and phosphate, and its action on fumarase, is proposed to explain the complete anaerobic degradation of malate in Saccharomyces bailii as compared with the partial decomposition of malate in Saccharomyces cerevisiae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...