Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (190)
  • 1965-1969
  • 1890-1899
  • 1800-1809
  • 2022  (190)
Years
Year
Language
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 294 (1992), S. 466-478 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 317 (1993), S. 474-484 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-23
    Description: Virtual paleontology studies digital fossils through data analysis and visualization systems. The discipline is growing in relevance for the evident advantages of non-destructive imaging techniques over traditional paleontological methods, and it has made significant advancements during the last few decades. However, virtual paleontology still faces a number of technological challenges, amongst which are interaction shortcomings of image segmentation applications. Whereas automated segmentation methods are seldom applicable to fossil datasets, manual exploration of these specimens is extremely time-consuming as it impractically delves into three-dimensional data through two-dimensional visualization and interaction means. This paper presents an application that employs virtual reality and haptics to virtual paleontology in order to evolve its interaction paradigms and address some of its limitations. We provide a brief overview of the challenges faced by virtual paleontology practitioners, a description of our immersive virtual paleontology prototype, and the results of a heuristic evaluation of our design.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-26
    Description: This article discusses the Length-Constrained Cycle Partition Problem (LCCP), which constitutes a new generalization of the Travelling Salesperson Problem (TSP). Apart from nonnegative edge weights, the undirected graph in LCCP features a nonnegative critical length parameter for each vertex. A cycle partition, i.e., a vertex-disjoint cycle cover, is a feasible solution for LCCP if the length of each cycle is not greater than the critical length of each vertex contained in it. The goal is to find a feasible partition having a minimum number of cycles. Besides analyzing theoretical properties and developing preprocessing techniques, we propose an elaborate heuristic algorithm that produces solutions of good quality even for large-size instances. Moreover, we present two exact mixed-integer programming formulations (MIPs) for LCCP, which are inspired by well-known modeling approaches for TSP. Further, we introduce the concept of conflict hypergraphs, whose cliques yield valid constraints for the MIP models. We conclude with a discussion on computational experiments that we conducted using (A)TSPLIB-based problem instances. As a motivating example application, we describe a routing problem where a fleet of uncrewed aerial vehicles (UAVs) must patrol a given set of areas.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-24
    Description: In the transition towards a pure hydrogen infrastructure, repurposing the existing natural gas infrastructure is considered. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-12
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-12
    Description: Mitte 2021 bescherte die Urheberrechtsreform neue Chancen für den (offenen) Zugang zum kulturellen Erbe. Die Reform brachte wichtige Veränderungen der rechtlichen Rahmenbedingungen für die Digitalisierung des kulturellen Erbes mit sich. Der Schutz der Gemeinfreiheit für digitale Reproduktionen wurde festgeschrieben, neue Regelungen ermöglichen die Onlinestellung „nicht verfügbarer Werke“ durch öffentliche Einrichtungen des Kulturerbes und erstmals können nun auch in Deutschland erweiterte kollektive Lizenzen umgesetzt werden. Dr. Paul Klimpel (iRights Law) hat die Neuerungen des Urheber*innenrechtsgesetzes (UrhG) in dieser Publikation in den urheberrechtlichen Gesamtkontext eingeordnet. Die Rechtsfibel soll als Orientierungshilfe für die Mitarbeiter*innen in den Kulturinstitutionen dienen. Herausgeber*innen sind das Digitale Deutsche Frauenarchiv (DDF) und das Forschungs- und Kompetenzzentrum Digitalisierung Berlin (digiS).
    Keywords: 4062127-3 ; 4002859-8 ; 4006439-6 ; 4040795-0 ; 4136812-5 ; 4129060-4 ; 4233427-5 ; 4045245-1 ; 4120677-0 ; 4011134-9 ; 4142968-0 ; 4006568-6 ; 4045895-7 ; 4522856-5 ; 4013134-8 ; 4067510-5 ; 4008570-3 ; 4033560-4 ; 4123592-7 ; 4123065-6 ; 7659230-3
    Language: German
    Type: other , doc-type:Other
    Format: application/pdf
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-06
    Description: Spatiotemporal signal shaping in G protein-coupled receptor (GPCR) signaling is now a well-established and accepted notion to explain how signaling specificity can be achieved by a superfamily sharing only a handful of downstream second messengers. Dozens of Gs-coupled GPCR signals ultimately converge on the production of cAMP, a ubiquitous second messenger. This idea is almost always framed in terms of local concentrations, the differences in which are maintained by means of spatial separation. However, given the dynamic nature of the reaction-diffusion processes at hand, the dynamics, in particular the local diffusional properties of the receptors and their cognate G proteins, are also important. By combining some first principle considerations, simulated data, and experimental data of the receptors diffusing on the membranes of living cells, we offer a short perspective on the modulatory role of local membrane diffusion in regulating GPCR-mediated cell signaling. Our analysis points to a diffusion-limited regime where the effective production rate of activated G protein scales linearly with the receptor–G protein complex’s relative diffusion rate and to an interesting role played by the membrane geometry in modulating the efficiency of coupling
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2023-01-03
    Description: We present a modelling and simulation framework for the dynamics of ovarian follicles and key hormones along the hypothalamic-pituitary-gonadal axis throughout consecutive human menstrual cycles. All simulation results (hormone concentrations and ovarian follicle sizes) are in biological units and can easily be compared to clinical data. The model takes into account variability in follicles' response to stimulating hormones, which introduces variability between cycles. The growth of ovarian follicles in waves is an emergent property in our model simulations and further supports the hypothesis that follicular waves are also present in humans. We use Approximate Bayesian Computation and cluster analysis to construct a population of virtual subjects and to study parameter distributions and sensitivities. The model can be used to compare and optimize treatment protocols for ovarian hyperstimulation, thus potentially forming the integral part of a clinical decision support system in reproductive endocrinology.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-09
    Description: This work presents an innovative short to mid-term forecasting model that analyzes nonlinear complex spatial and temporal dynamics in energy networks under demand and supply balance constraints using Network Nonlinear Time Series (TS) and Mathematical Programming (MP) approach. We address three challenges simultaneously, namely, the adjacency matrix is unknown; the total amount in the network has to be balanced; dependence is unnecessarily linear. We use a nonparametric approach to handle the nonlinearity and estimate the adjacency matrix under the sparsity assumption. The estimation is conducted with the Mathematical Optimisation method. We illustrate the accuracy and effectiveness of the model on the example of the natural gas transmission network of one of the largest transmission system operators (TSOs) in Germany, Open Grid Europe. The obtained results show that, especially for shorter forecasting horizons, proposed method outperforms all considered benchmark models, improving the avarage nMAPE for 5.1% and average RMSE for 79.6% compared to the second-best model. The model is capable to capture the nonlinear dependencies in the complex spatial-temporal network dynamics and benefits from both sparsity assumption and the demand and supply balance constraint.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-01-09
    Description: The electric conductivity of cardiac tissue determines excitation propagation and is vital for quantifying ischemia and scar tissue and building personalized models. As scar tissue is generally characterized by different conduction of electrical excitation, we aim to estimate conductivity-related parameters in mathematical excitation models from endocardial mapping data, particularly the anisotropic conductivity tensor in the monodomain equation, which describes the cardiac excitation. Yet, estimating the distributed and anisotropic conductivity tensors reliably and efficiently from endocardial mapping data or electrocardiograms is a challenging inverse problem due to the computational complexity of the monodomain equation; Many expensive high-resolution computations for the monodomain equation on very fine space and time discretizations are involved. Thus, we aim at building an efficient multilevel method for accelerating the estimation procedure combining electrophysiology models of different complex- ity, which uses a computationally cheap eikonal model in addition to the more accurate monodomain model. Distributed parameter estimation, well-known as an ill-posed inverse problem, can be performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface subject to the monodomain model and some regularization, leading to a partial differential equation constrained optimization problem. We formulate this optimization problem, including scar tissue modeling and different regularizations, and design an efficient iterative solver. To this aim, we consider monodomain grid hi- erarchies, monodomain-eikonal model hierarchies, and the combination of both hierarchies in a recursive multilevel trust-region (RMTR) method. On the one hand, both the trust region method’s estimation quality and efficiency, independent of the data, are investigated from several numerical exam- ples. Endocardial mapping data of realistic density appears to be sufficient to provide quantitatively reasonable estimates of the location, size, and shape of scars close to the endocardial surface. In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more involved monodomain model for this purpose. Moreover, Eikonal models can accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data. In many situations, eikonal models approximate monodomain models well but are orders of magnitude faster to solve. Thus, eikonal models can utilize them to provide an RMTR acceleration with negligible overhead per iteration, resulting in a practical approach to estimating myocardial scars from endocardial mapping data. In addition, the multilevel solver is faster than a comparable single-level solver. On the other hand, we investigate different optimization approaches based on adjoint gradient computation for computing a maximum posterior estimate: steepest descent, limited memory BFGS, and recursive multilevel trust region methods using mesh hierarchies or heterogeneous model hierarchies. We compare overall performance, asymptotic convergence rate, and pre-asymptotic progress on selected examples in order to assess the benefit of our multifidelity acceleration.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-01-09
    Description: This work provides a brief description of Omni-Path Express and the current status of its development, stability, and performance. Basic benchmarks that highlight the gains of OPX over PSM2 are provided, and the results of an initial performance and scalability study of several applications are presented.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-01-09
    Description: The fight against climate change makes extreme but inevitable changes in the energy sector necessary. These in turn lead to novel and complex challenges for the transmission system operators (TSOs) of gas transport networks. In this thesis, we consider four different planning problems emerging from real-world operations and present mathematical programming models and solution approaches for all of them. Due to regulatory requirements and side effects of renewable energy production, controlling today's gas networks with their involved topologies is becoming increasingly difficult. Based on the network station modeling concept for approximating the technical capabilities of complex subnetworks, e.g., compressor stations, we introduce a tri-level MIP model to determine important global control decisions. Its goal is to avoid changes in the network elements' settings while deviations from future inflow pressures as well as supplies and demands are minimized. A sequential linear programming inspired post-processing routine is run to derive physically accurate solutions w.r.t. the transient gas flow in pipelines. Computational experiments based on real-world data show that meaningful solutions are quickly and reliably determined. Therefore, the algorithmic approach is used within KOMPASS, a decision support system for the transient network control that we developed together with the Open Grid Europe GmbH (OGE), one of Europe's largest natural gas TSOs. Anticipating future use cases, we adapt the aforementioned algorithmic approach for hydrogen transport. We investigate whether the natural gas infrastructure can be repurposed and how the network control changes when energy-equivalent amounts of hydrogen are transported. Besides proving the need for purpose-built compressors, we observe that, due to the reduced linepack, the network control becomes more dynamic, compression energy increases by 440% on average, and stricter regulatory rules regarding the balancing of supply and demand become necessary. Extreme load flows expose the technical limits of gas networks and are therefore of great importance to the TSOs. In this context, we introduce the Maximum Transportation Problem and the Maximum Potential Transport Moment Problem to determine severe transport scenarios. Both can be modeled as linear bilevel programs where the leader selects supplies and demands, maximizing the follower's transport effort. To solve them, we identify solution-equivalent instances with acyclic networks, provide variable bounds regarding their KKT reformulations, apply the big-M technique, and solve the resulting MIPs. A case study shows that the obtained scenarios exceed the maximum severity values of a provided test set by at least 23%. OGE's transmission system is 11,540km long. Monitoring it is crucial for safe operations. To this end, we discuss the idea of using uncrewed aerial vehicles and introduce the Length-Constrained Cycle Partition Problem to optimize their routing. Its goal is to find a smallest cycle partition satisfying vertex-induced length requirements. Besides a greedy-style heuristic, we propose two MIP models. Combining them with symmetry-breaking constraints as well as valid inequalities and lower bounds from conflict hypergraphs yields a highly performant solution algorithm for this class of problems.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-01-09
    Description: This paper introduces an implementation for solving the single-source shortest path problem on distributed-memory machines. It is tailored to power-law graphs and scales to trillions of edges. The new implementation reached 2nd and 10th place in the latest Graph500 benchmark in June 2022 and handled the largest and second-largest graphs among all participants.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-01-09
    Description: We study consistency of cell-centered finite difference methods for elliptic equations with degenerate coefficients in any space dimension $d \geq 2$. This results in order of convergence estimates in the natural weighted energy norm and in the weighted discrete $L^2$-norm on admissible meshes. The cells of meshes under consideration may be very irregular in size. We particularly allow the size of certain cells to remain bounded from below even in the asymptotic limit. For uniform meshes we show that the order of convergence is at least 1 in the energy semi-norm, provided the discrete and continuous solutions exist and the continuous solution has $H^2$ regularity.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-01-11
    Description: Hypokalemia, characterized by too low serum potassium levels, is a severe mineral disorder which can be life threatening. It is increasingly diagnosed in veterinarian healthcare and a topic of ongoing research. In this paper, we explore the different originating conditions of hypokalemia: reduced potassium intake, increased excretion, acid-base disturbances, or increased insulin, by using a dynamic mathematical model for potassium balance in non-lactating and lactating cows. Simulations are compared with literature. The results give insights into the network dynamics and point to scenarios on which experimental effort should be focused. Application of mathematical models can assist in experimental planning as well as the reduction, refinement and replacement of animal experiments.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-01-13
    Description: The Hemiptera is the largest non-endopterygote insect order comprising approximately 98,000 recent species. All species of the suborders Cicadomorpha (leafhoppers, spittlebugs, treehoppers and cicadas) and Fulgoromorpha (planthoppers) feed by sucking sap from plant tissues and are thus often vectors for economically important phytopathogens. Except for the cicadas (Cicadomorpha: Cicadoidea: Cicadidae) which produce air-borne sounds, all species of the suborders Cicadomorpha and Fulgoromorpha communicate by vibrational (substrate-borne) signals. While the generation of these signals has been extensively investigated, the mechanisms of perception are poorly understood. This study provides a full description and 3D reconstruction of a large and complex array of six paired chordotonal organs in the first abdominal segments of the Rhododendron leafhopper Graphocephala fennahi (Cicadomorpha: Membracoidea: Cicadellidae). Further we were able to identify homologous organs in the closely related spittlebug Philaenus spumarius (Cicadomorpha: Cercopoidea: Aphrophoridae) and the planthopper Issus coleoptratus (Fulgoromorpha: Fulgoroidea: Issidae). The configuration is congruent with the abdominal chordotonal organs in cicadas, where one of them is an elaborate tympanal organ. This indicates that these organs, together with the tymbal organ constitute a synapomorphy of the Tymbalia (Hemiptera excl. Sternorrhyncha). Our results contribute to the understanding of the evolution from substrate-borne to airborne communication in insects.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-01-17
    Description: Sharing labeled data is crucial to acquire large datasets for various Deep Learning applications. In medical imaging, this is often not feasible due to privacy regulations. Whereas anonymization would be a solution, standard techniques have been shown to be partially reversible. Here, synthetic data using a Generative Adversarial Network (GAN) with differential privacy guarantees could be a solution to ensure the patient's privacy while maintaining the predictive properties of the data. In this study, we implemented a Wasserstein GAN (WGAN) with and without differential privacy guarantees to generate privacy-preserving labeled Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) image patches for brain vessel segmentation. The synthesized image-label pairs were used to train a U-net which was evaluated in terms of the segmentation performance on real patient images from two different datasets. Additionally, the Fréchet Inception Distance (FID) was calculated between the generated images and the real images to assess their similarity. During the evaluation using the U-Net and the FID, we explored the effect of different levels of privacy which was represented by the parameter ϵ. With stricter privacy guarantees, the segmentation performance and the similarity to the real patient images in terms of FID decreased. Our best segmentation model, trained on synthetic and private data, achieved a Dice Similarity Coefficient (DSC) of 0.75 for ϵ = 7.4 compared to 0.84 for ϵ = ∞ in a brain vessel segmentation paradigm (DSC of 0.69 and 0.88 on the second test set, respectively). We identified a threshold of ϵ 〈5 for which the performance (DSC 〈0.61) became unstable and not usable. Our synthesized labeled TOF-MRA images with strict privacy guarantees retained predictive properties necessary for segmenting the brain vessels. Although further research is warranted regarding generalizability to other imaging modalities and performance improvement, our results mark an encouraging first step for privacy-preserving data sharing in medical imaging.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-01-17
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-01-19
    Description: The proportional fair resource allocation problem is a major problem studied in flow control of networks, operations research, and economic theory, where it has found numerous applications. This problem, defined as the constrained maximization of sum_i log x_i, is known as the packing proportional fairness problem when the feasible set is defined by positive linear constraints and x ∈ R≥0. In this work, we present a distributed accelerated first-order method for this problem which improves upon previous approaches. We also design an algorithm for the optimization of its dual problem. Both algorithms are width-independent.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-01-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-01-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-01-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-01-19
    Description: The Hales-Jewett Theorem states that any r-colouring of [m]ⁿ contains a monochromatic combinatorial line if n is large enough. Shelah's proof of the theorem implies that for m = 3 there always exists a monochromatic combinatorial line whose set of active coordinates is the union of at most r intervals. For odd r, Conlon and Kamčev constructed r–colourings for which it cannot be fewer than r intervals. However, we show that for even r and large n, any r–colouring of [3]ⁿ contains a monochromatic combinatorial line whose set of active coordinates is the union of at most r−1 intervals. This is optimal and extends a result of Leader and Räty for r=2.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-01-20
    Description: Dynamical reweighting methods permit to estimate kinetic observables of a stochastic process governed by a target potential U(x) from trajectories that have been generated at a different potential V(x). In this article, we present Girsanov reweighting and Square Root Approximation (SqRA): the first method reweights path probabilities exploiting the Girsanov theorem and can be applied to Markov State Models (MSMs) to reweight transition probabilities; the second method was originally developed to discretize the Fokker-Planck operator into a transition rate matrix, but here we implement it into a reweighting scheme for transition rates. We begin by reviewing the theoretical background of the methods, then present two applications relevant to Molecular Dynamics (MD), highlighting their strengths and weaknesses.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-01-20
    Description: A conjugated Cy5 dye-peptide system reveals the formation of two novel and structurally distinct supramolecular assemblies with photo-physical characteristics of H-type dimers or tetramers, respectively. The molecular ultrastructures are triggered by the complementary interplay of mutual chromophore coupling and pH induced changes in the peptide charge pattern.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-01-20
    Description: Mixed Integer Programming (MIP) is NP-hard, and yet modern solvers often solve large real-world problems within minutes. This success can partially be attributed to heuristics. Since their behavior is highly instance-dependent, relying on hard-coded rules derived from empirical testing on a large heterogeneous corpora of benchmark instances might lead to sub-optimal performance. In this work, we propose an online learning approach that adapts the application of heuristics towards the single instance at hand. We replace the commonly used static heuristic handling with an adaptive framework exploiting past observations about the heuristic’s behavior to make future decisions. In particular, we model the problem of controlling Large Neighborhood Search and Diving – two broad and complex classes of heuristics – as a multi-armed bandit problem. Going beyond existing work in the literature, we control two different classes of heuristics simultaneously by a single learning agent. We verify our approach numerically and show consistent node reductions over the MIPLIB 2017 Benchmark set. For harder instances that take at least 1000 seconds to solve, we observe a speedup of 4%.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-01-23
    Language: German
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-02-06
    Description: Statistical shape modeling aims at capturing shape variations of an anatomical structure that occur within a given population. Shape models are employed in many tasks, such as shape reconstruction and image segmentation, but also shape generation and classification. Existing shape priors either require dense correspondence between training examples or lack robustness and topological guarantees. We present FlowSSM, a novel shape modeling approach that learns shape variability without requiring dense correspondence between training instances. It relies on a hierarchy of continuous deformation flows, which are parametrized by a neural network. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior for distal femur and liver. We show that the emerging latent representation is discriminative by separating healthy from pathological shapes. Ultimately, we demonstrate its effectiveness on two shape reconstruction tasks from partial data. Our source code is publicly available (https://github.com/davecasp/flowssm).
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-03-14
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-03-14
    Description: One of the main challenges in molecular dynamics is overcoming the “timescale barrier”, a phrase used to describe that in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, not even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics, and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behavior on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory as well as the algorithmic development from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in MD. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-03-09
    Description: Surgical interventions are becoming increasingly complex thanks to modern assistance systems (imaging, robotics, etc.). Minimally invasive surgery in particular places high demands on surgeons due to added surgical complexity and information overload. Therefore, there is a growing need of developing context-aware systems that recognize the current surgical situation in order to derive and present the relevant information to the surgical staff for assistance. Current approaches for deriving contextual cues either utilize specialized hardware that is disruptive to the surgical workflow, or utilize vision-based approaches that require valuable time of surgeons, especially for manual annotations. The main objective of this cumulative dissertation is to improve the existing approaches for three important sub-problems of vision-based context-aware systems, namely surgical phase recognition, surgical instrument recognition and surgical instrument segmentation, while tackling the vision and manual annotation challenges related to these problems. This dissertation demonstrates that vision-based approaches for the three named clinical sub-problems of context-aware systems can be developed in an annotation-scarce setting by employing: domain-specific, deep learning based transfer learning techniques for the surgical instrument and phase recognition tasks; and deep learning based simulation-to-real unsupervised domain adaptation techniques for the surgical instrument segmentation task. The efficacy and real-time performance of the developed approaches have been evaluated on publicly available datasets containing real surgical videos (laparoscopic procedures) that were acquired in an uncontrolled surgical environment. These proposed approaches advance the state-of-the-art for the aforementioned research problems of context-aware systems in the OR and can potentially be utilized for real-time notification of the surgical phase, surgical instrument usage and image-based localization of surgical instruments.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-03-27
    Description: The highly localized dynamics of cardiac electrophysiology models call for adaptive simulation methods. Unfortunately, the overhead incurred by classical mesh adaptivity turns out to outweigh the performance improvements achieved by reducing the problem size. Here, we explore a different approach to adaptivity based on algebraic degree of freedom subset selection during spectral deferred correction sweeps, which realizes a kind of multirate higher order integration. Numerical experience indicates a significant performance increase compared to uniform simulations.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-03-27
    Description: This C++ code implements a cell-by-cell model of cardiac excitation using a piecewise-continuous finite element discretization and spectral deferred correction time stepping. The code is based on the Kaskade 7 finite element toolbox and forms a prototype for the µCarp code to be implemented in the Microcard project.
    Language: English
    Type: software , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-03-20
    Description: Reconstructing anatomical shapes from sparse or partial measurements relies on prior knowledge of shape variations that occur within a given population. Such shape priors are learned from example shapes, obtained by segmenting volumetric medical images. For existing models, the resolution of a learned shape prior is limited to the resolution of the training data. However, in clinical practice, volumetric images are often acquired with highly anisotropic voxel sizes, e.g. to reduce image acquisition time in MRI or radiation exposure in CT imaging. The missing shape information between the slices prohibits existing methods to learn a high-resolution shape prior. We introduce a method for high-resolution shape reconstruction from sparse measurements without relying on high-resolution ground truth for training. Our method is based on neural implicit shape representations and learns a continuous shape prior only from highly anisotropic segmentations. Furthermore, it is able to learn from shapes with a varying field of view and can reconstruct from various sparse input configurations. We demonstrate its effectiveness on two anatomical structures: vertebra and femur, and successfully reconstruct high-resolution shapes from sparse segmentations, using as few as three orthogonal slices.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-03-20
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-03-20
    Description: The present dataset contains the 3D models analyzed in Berio, F., Bayle, Y., Baum, D., Goudemand, N., and Debiais-Thibaud, M. 2022. Hide and seek shark teeth in Random Forests: Machine learning applied to Scyliorhinus canicula. It contains the head surfaces of 56 North Atlantic and Mediterranean small-spotted catsharks Scyliorhinus canicula, from which tooth surfaces were further extracted to perform geometric morphometrics and machine learning.
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-03-20
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-03-20
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-03-20
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-03-20
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-03-20
    Description: Shark populations that are distributed alongside a latitudinal gradient often display body size differences at sexual maturity and vicariance patterns related to their number of tooth files. Previous works have demonstrated that Scyliorhinus canicula exhibits distinct genetic structures, life history traits, and body size differences between populations inhabiting the North Atlantic Ocean and the Mediterranean Sea. In this work, we sample more than 3,000 S. canicula teeth from 56 specimens and provide and use a dataset containing their shape coordinates. We investigate tooth shape and form differences between a Mediterranean and an Atlantic S. canicula population using two approaches. Classification results show that the classical geometric morphometric framework is outperformed by an original Random Forests-based framework. Visually, both S. canicula populations share similar ontogenetic trends and timing of gynandric heterodonty emergence but the Atlantic population has bigger, blunter teeth, and less numerous accessory cusps than the Mediterranean population. According to the models, the populations are best differentiated based on their lateral tooth edges, which bear accessory cusps, and the tooth centroid sizes significantly improve classification performances. The differences observed are discussed in light of dietary and behavioural habits of the populations considered. The method proposed in this study could be further adapted to complement DNA analyses to identify shark species or populations based on tooth morphologies. This process would be of particular interest for fisheries management and identification of shark fossils.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-03-20
    Description: Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here we circumvent the need for feedback or precise planning by using an array of fluidically-actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy, and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides new options for soft, adaptable grasping.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-03-20
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-03-20
    Description: Certificates of polynomial nonnegativity can be used to obtain tight dual bounds for polynomial optimization problems. We consider Sums of Nonnegative Circuit (SONC) polynomials certificates, which are well suited for sparse problems since the computational cost depends only on the number of terms in the polynomials and does not depend on the degrees of the polynomials. This work is a first step to integrating SONC-based relaxations of polynomial problems into a branch-and-bound algorithm. To this end, the SONC relaxation for constrained optimization problems is extended in order to better utilize variable bounds, since this property is key for the success of a relaxation in the context of branch-and-bound. Computational experiments show that the proposed extension is crucial for making the SONC relaxations applicable to most constrained polynomial optimization problems and for integrating the two approaches.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-03-20
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-03-20
    Description: The segmentation of cavities in three-dimensional images of arbitrary objects is a difficult problem since the cavities are usually connected to the outside of the object without any difference in image intensity. Hence, the information whether a voxel belongs to a cavity or the outside needs to be derived from the ambient space. If a voxel is enclosed by object material, it is very likely that this voxel belongs to a cavity. However, there are dense structures where a voxel might still belong to the outside even though it is surrounded to a large degree by the object. This is, for example, the case for coral colonies. Therefore, additional information needs to be considered to distinguish between those cases. In this paper, we introduce the notion of ambient curvature, present an efficient way to compute it, and use it to segment coral polyp cavities by integrating it into the ambient occlusion framework. Moreover, we combine the ambient curvature with other ambient information in a Gaussian mixture model, trained from a few user scribbles, resulting in a significantly improved cavity segmentation. We showcase the superiority of our approach using four coral colonies of very different morphological types. While in this paper we restrict ourselves to coral data, we believe that the concept of ambient curvature is also useful for other data. Furthermore, our approach is not restricted to curvature but can be easily extended to exploit any properties given on an object's surface, thereby adjusting it to specific applications.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-03-20
    Description: The covering of a graph with (possibly disjoint) connected subgraphs is a funda-mental problem in graph theory. In this paper, we study a version to cover a graph’svertices by connected subgraphs subject to lower and upper weight bounds, and pro-pose a column generation approach to dynamically generate feasible and promisingsubgraphs. Our focus is on the solution of the pricing problem which turns out to bea variant of the NP-hard Maximum Weight Connected Subgraph Problem. We com-pare different formulations to handle connectivity, and find that a single-commodityflow formulation performs best. This is notable since the respective literature seemsto have widely dismissed this formulation. We improve it to a new coarse-to-fine flowformulation that is theoretically and computationally superior, especially for largeinstances with many vertices of degree 2 like highway networks, where it provides aspeed-up factor of 5 over the non-flow-based formulations. We also propose a pre-processing method that exploits a median property of weight-constrained subgraphs,a primal heuristic, and a local search heuristic. In an extensive computational studywe evaluate the presented connectivity formulations on different classes of instances,and demonstrate the effectiveness of the proposed enhancements. Their speed-upsessentially multiply to an overall factor of well over 10. Overall, our approach allowsthe reliable solution of instances with several hundreds of vertices in a few min-utes. These findings are further corroborated in a comparison to existing districtingmodels on a set of test instances from the literature
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-03-20
    Description: Faithful chromosome segregation requires the assembly of a bipolar spindle, consisting of two antiparallel microtubule (MT) arrays having most of their minus ends focused at the spindle poles and their plus ends overlapping in the spindle midzone. Spindle assembly, chromosome alignment and segregation require highly dynamic MTs. The plus ends of MTs have been extensively investigated; instead, their minus end structure remains poorly characterized. Here, we used large-scale electron tomography to study the morphology of the MT minus ends in 3D-reconstructed metaphase spindles in HeLa cells. In contrast to the homogeneous open morphology of the MT plus ends at the kinetochores, we found that MT minus ends are heterogeneous showing either open or closed morphologies. Silencing the minus-end specific stabilizer, MCRS1 increased the proportion of open MT minus ends. Altogether, these data suggest a correlation between the morphology and the dynamic state of the MT ends. Taking this heterogeneity of the MT minus end morphologies into account, our work indicates an unsynchronized behavior of MTs at the spindle poles, thus laying the ground for further studies on the complexity of MT dynamics regulation.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-03-20
    Description: Statistical shape models learn to capture the most characteristic geometric variations of anatomical structures given samples from their population. Accordingly, shape models have become an essential tool for many medical applications and are used in, for example, shape generation, reconstruction, and classification tasks. However, established statistical shape models require precomputed dense correspondence between shapes, often lack robustness, and ignore the global surface topology. This thesis presents a novel neural flow-based shape model that does not require any precomputed correspondence. The proposed model relies on continuous flows of a neural ordinary differential equation to model shapes as deformations of a template. To increase the expressivity of the neural flow and disentangle global, low-frequency deformations from the generation of local, high- frequency details, we propose to apply a hierarchy of flows. We evaluate the performance of our model on two anatomical structures, liver, and distal femur. Our model outperforms state-of-the-art methods in providing an expressive and robust shape prior, as indicated by its generalization ability and specificity. More so, we demonstrate the effectiveness of our shape model on shape reconstruction tasks and find anatomically plausible solutions. Finally, we assess the quality of the emerging shape representation in an unsupervised setting and discriminate healthy from pathological shapes.
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-03-20
    Description: Periodic timetabling is a central aspect of both the long-term organization and the day-to-day operations of a public transportation system. The Periodic Event Scheduling Problem (PESP), the combinatorial optimization problem that forms the mathematical basis of periodic timetabling, is an extremely hard problem, for which optimal solutions are hardly ever found in practice. The most prominent solving strategies today are based on mixed-integer programming, and there is a concurrent PESP solver employing a wide range of heuristics [3]. We present tropical neighborhood search (tns), a novel PESP heuristic. The method is based on the relations between periodic timetabling and tropical geometry [4]. We implement tns into the concurrent solver, and test it on instances of the benchmarking library PESPlib. The inclusion of tns turns out to be quite beneficial to the solver: tns is able to escape local optima for the modulo network simplex algorithm, and the overall share of improvement coming from tns is substantial compared to the other methods available in the solver. Finally, we provide better primal bounds for five PESPlib instances.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-03-20
    Description: This study investigates the progress made in lp and milp solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving lp/milp, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for lp and around 50 for milp, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-03-20
    Description: In this work, we address the challenge of developing statistical shape models that account for the non-Euclidean nature inherent to (anatomical) shape variation and at the same time offer fast, numerically robust processing and as much invariance as possible regarding translation and rotation, i.e. Euclidean motion. With the aim of doing that we formulate a continuous and physically motivated notion of shape space based on deformation gradients. We follow two different tracks endowing this differential representation with a Riemannian structure to establish a statistical shape model. (1) We derive a model based on differential coordinates as elements in GL(3)+. To this end, we adapt the notion of bi-invariant means employing an affine connection structure on GL(3)+. Furthermore, we perform second-order statistics based on a family of Riemannian metrics providing the most possible invariance, viz. GL(3)+-left-invariance and O(3)-right-invariance. (2) We endow the differential coordinates with a non-Euclidean structure, that stems from a product Lie group of stretches and rotations. This structure admits a bi-invariant metric and thus allows for a consistent analysis via manifold-valued Riemannian statistics. This work further presents a novel shape representation based on discrete fundamental forms that is naturally invariant under Euclidean motion, namely the fundamental coordinates. We endow this representation with a Lie group structure that admits bi-invariant metrics and therefore allows for consistent analysis using manifold-valued statistics based on the Riemannian framework. Furthermore, we derive a simple, efficient, robust, yet accurate (i.e. without resorting to model approximations) solver for the inverse problem that allows for interactive applications. Beyond statistical shape modeling the proposed framework is amenable for surface processing such as quasi-isometric flattening. Additionally, the last part of the thesis aims on shape-based, continuous disease stratification to provide means that objectify disease assessment over the current clinical practice of ordinal grading systems. Therefore, we derive the geodesic B-score, a generalization of the of the Euclidean B-score, in order to assess knee osteoarthritis. In this context we present a Newton-type fixed point iteration for projection onto geodesics in shape space. On the application side, we show that the derived geodesic B-score features, in comparison to its Euclidean counterpart, an improved predictive performance on assessing the risk of total knee replacement surgery.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-03-20
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-03-20
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-03-20
    Description: The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective. Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method’s success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-03-20
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2023-03-20
    Description: Alternative treatment methods for knee osteoarthritis (OA) are in demand, to delay the young (〈 50 Years) patient’s need for osteotomy or knee replacement. Novel interpositional knee spacers shape based on statistical shape model (SSM) approach and made of polyurethane (PU) were developed to present a minimally invasive method to treat medial OA in the knee. The implant should be supposed to reduce peak strains and pain, restore the stability of the knee, correct the malalignment of a varus knee and improve joint function and gait. Firstly, the spacers were tested in artificial knee models. It is assumed that by application of a spacer, a significant reduction in stress values and a significant increase in the contact area in the medial compartment of the knee will be registered. Biomechanical analysis of the effect of novel interpositional knee spacer implants on pressure distribution in 3D-printed knee model replicas: the primary purpose was the medial joint contact stress-related biomechanics. A secondary purpose was a better understanding of medial/lateral redistribution of joint loading. Six 3D printed knee models were reproduced from cadaveric leg computed tomography. Each of four spacer implants was tested in each knee geometry under realistic arthrokinematic dynamic loading conditions, to examine the pressure distribution in the knee joint. All spacers showed reduced mean stress values by 84–88% and peak stress values by 524–704% in the medial knee joint compartment compared to the non-spacer test condition. The contact area was enlarged by 462–627% as a result of the inserted spacers. Concerning the appreciable contact stress reduction and enlargement of the contact area in the medial knee joint compartment, the premises are in place for testing the implants directly on human knee cadavers to gain further insights into a possible tool for treating medial knee osteoarthritis.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-03-29
    Description: Using the recently proposed maximal quadratic-free sets and the well-known monoidal strengthening procedure, we show how to improve inter- section cuts for quadratically-constrained optimization problems by exploiting integrality requirements. We provide an explicit construction that allows an efficient implementation of the strengthened cuts along with computational results showing their improvements over the standard intersection cuts. We also show that, in our setting, there is unique lifting which implies that our strengthening procedure is generating the best possible cut coefficients for the integer variables.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-03-31
    Description: Next-Generation Sequencing technologies generate a vast and exponentially increasing amount of sequence data. The Interleaved Bloom Filter (IBF) is a novel indexing data structure which is state-of-the-art for distributing approximate queries with an in-memory data structure. With it, a main task of sequence analysis pipelines, (approximately) searching large reference data sets for sequencing reads or short sequence patterns like genes, can be significantly accelerated. To meet performance and energy-efficiency requirements, we chose a co-design approach of the IBF data structure on the FPGA platform. Further, our OpenCL-based implementation allows a seamless integration into the widely used SeqAn C++ library for biological sequence analysis. Our algorithmic design and optimization strategy takes advantage of FPGA-specific features like shift register and the parallelization potential of many bitwise operations. We designed a well-chosen schema to partition data across the different memory domains on the FPGA platform using the Shared Virtual Memory concept. We can demonstrate significant improvements in energy efficiency of up to 19x and in performance of up to 5.6x, respectively, compared to a well-tuned, multithreaded CPU reference.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-03-31
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 63
  • 64
    Publication Date: 2023-04-27
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-04-27
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-04-27
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 67
  • 68
    Publication Date: 2023-04-27
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-04-19
    Description: This paper presents the outcomes of a contest organized to evaluate methods for the online recognition of heterogeneous gestures from sequences of 3D hand poses. The task is the detection of gestures belonging to a dictionary of 16 classes characterized by different pose and motion features. The dataset features continuous sequences of hand tracking data where the gestures are interleaved with non-significant motions. The data have been captured using the Hololens 2 finger tracking system in a realistic use-case of mixed reality interaction. The evaluation is based not only on the detection performances but also on the latency and the false positives, making it possible to understand the feasibility of practical interaction tools based on the algorithms proposed. The outcomes of the contest's evaluation demonstrate the necessity of further research to reduce recognition errors, while the computational cost of the algorithms proposed is sufficiently low.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-05-30
    Description: The relation between ice composition in the nucleus of comet 67P/Churyumov-Gerasimenko on the one hand and relative abundances of volatiles in the coma on the other hand is important for the interpretation of density measurements in the environment of the cometary nucleus. For the 2015 apparition, in situ measurements from the two ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) sensors COPS (COmet Pressure Sensor) and DFMS (Double Focusing Mass Spectrometer) determined gas densities at the spacecraft position for the 14 gas species H2O, CO2, CO, H2S, O2, C2H6, CH3OH, H2CO, CH4, NH3, HCN, C2H5OH, OCS, and CS2. We derive the spatial distribution of the gas emissions on the complex shape of the nucleus separately for 50 subintervals of the two-year mission time. The most active patches of gas emission are identified on the surface. We retrieve the relation between solar irradiation and observed emissions from these patches. The emission rates are compared to a minimal thermophysical model to infer the surface active fraction of H2O and CO2. We obtain characteristic differences in the ice composition close to the surface between the two hemispheres with a reduced abundance of CO2 ice on the northern hemisphere (locations with positive latitude). We do not see significant differences for the ice composition on the two lobes of 67P/C-G.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 71
  • 72
    Publication Date: 2023-07-17
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-07-17
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-07-17
    Description: To improve the identification and management of viral respiratory infections, we established a clinical and virologic surveillance program for pediatric patients fulfilling pre-defined case criteria of influenza-like illness and viral respiratory infections. The program resulted in a cohort comprising 6,073 patients (56% male, median age 1.6 years, range 0–18.8 years), where every patient was assessed with a validated disease severity score at the point-of-care using the ViVI ScoreApp. We used machine learning and agnostic feature selection to identify characteristic clinical patterns. We tested all patients for human adenoviruses, 571 (9%) were positive. Adenovirus infections were particularly common and mild in children ≥1 month of age but rare and potentially severe in neonates: with lower airway involvement, disseminated disease, and a 50% mortality rate (n = 2/4). In one fatal case, we discovered a novel virus …
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-07-17
    Description: Version 4.0 of the Message Passing Interface standard introduced the concept of Partitioned Communication which adds support for multiple contributions to a communication buffer. Although initially targeted at multithreaded MPI applications, Partitioned Communication currently receives attraction in the context of accelerators, especially GPUs. In this publication it is demonstrated that this communication concept can also be implemented for SYCL-programmed FPGAs. This includes a discussion of the design space and the presentation of a prototypical implementation. Experimental results show that a lightweight implementation on top of an existing MPI library is possible. In addition, the presented approach also reveals issues in both the SYCL and the MPI standard which need to be addresses for improved support of the intended communication style.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-07-17
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-06-23
    Description: Shape analysis provides principled means for understanding anatomical structures from medical images. The underlying notions of shape spaces, however, come with strict assumptions prohibiting the analysis of incomplete and/or topologically varying shapes. This work aims to alleviate these limitations by adapting the concept of soft correspondences. In particular, we present a graph-based learning approach for morphometric classification of disease states that is based on a generalized notion of shape correspondences in terms of functional maps. We demonstrate the performance of the derived classifier on the open-access ADNI database for differentiating normal controls and subjects with Alzheimer’s disease. Notably, our experiment shows that our approach can improve over state-of-the-art from geometric deep learning.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-07-14
    Description: A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. With the trained network we produce a feasible solution in 2.5s, use it as a warm-start solution, and thereby decrease global optimal solution solve time by 60.5%.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-07-14
    Description: Deep convolutional neural networks (DCNNs) are routinely used for image segmentation of biomedical data sets to obtain quantitative measurements of cellular structures like tissues. These cellular structures often contain gaps in their boundaries, leading to poor segmentation performance when using DCNNs like the U-Net. The gaps can usually be corrected by post-hoc computer vision (CV) steps, which are specific to the data set and require a disproportionate amount of work. As DCNNs are Universal Function Approximators, it is conceivable that the corrections should be obsolete by selecting the appropriate architecture for the DCNN. In this article, we present a novel theoretical framework for the gap-filling problem in DCNNs that allows the selection of architecture to circumvent the CV steps. Combining information-theoretic measures of the data set with a fundamental property of DCNNs, the size of their receptive field, allows us to formulate statements about the solvability of the gap-filling problem independent of the specifics of model training. In particular, we obtain mathematical proof showing that the maximum proficiency of filling a gap by a DCNN is achieved if its receptive field is larger than the gap length. We then demonstrate the consequence of this result using numerical experiments on a synthetic and real data set and compare the gap-filling ability of the ubiquitous U-Net architecture with variable depths. Our code is available at https://github.com/ai-biology/dcnn-gap-filling.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-07-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-08-02
    Description: Timetabling is a classical and complex task for public transport operators as well as for railway undertakings. The general question is: Which vehicle is taking which route through the transportation network in which order? In this paper, we consider the special setting to find optimal timetables for railway systems under a moving block regime. We directly set up on our work of [8 ], i.e., we consider the same model formulation and real-world instances of a moving block headway system. In this paper, we present a repair heuristic and a lazy-constraint approach utilizing the callback features of Gurobi, see [3]. We provide an experimental study of the different algorithmic approaches for a railway network with 100 and up to 300 train requests. The computational results show that the lazy-constraint approach together with the repair heuristic significantly improves our previous approaches.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-08-02
    Description: The Flight Planning Problem is to find a minimum fuel trajectory between two airports in a 3D airway network under consideration of the wind. We show that this problem is NP-hard, even in its most basic version. We then present a novel A∗ heuristic, whose potential function is derived from an idealized vertical profile over the remaining flight distance. This potential is, under rather general assumptions, both admissible and consistent and it can be computed efficiently. The method outperforms the state-of-the-art heuristic on real-life instances.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-08-02
    Description: Line planning in public transport involves determining vehicle routes and assigning frequencies of service such that travel demands are satisfied. We evaluate how line plans, which are optimal with respect to in-motion costs (IMC), the objective function depending purely on arc-lengths for both user and operator costs, performs with respect to the value of resources consumed (VRC). The latter is an elaborate, socio-economic cost function which includes discomfort caused by delay, boarding and alighting times, and transfers. Even though discomfort is a large contributing factor to VRC and is entirely disregarded in IMC,  we observe that the two cost functions are qualitatively comparable.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-08-01
    Description: Robust optimization methods have shown practical advantages in a wide range of decision-making applications under uncertainty. Recently, their efficacy has been extended to multiperiod settings. Current approaches model uncertainty either independent of the past or in an implicit fashion by budgeting the aggregate uncertainty. In many applications, however, past realizations directly influence future uncertainties. For this class of problems, we develop a modeling framework that explicitly incorporates this dependence via connected uncertainty sets, whose parameters at each period depend on previous uncertainty realizations. To find optimal here-and-now solutions, we reformulate robust and distributionally robust constraints for popular set structures and demonstrate this modeling framework numerically on broadly applicable knapsack and portfolio-optimization problems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-08-01
    Description: We formulate the line planning problem in public transport as a mixed integer linear program (MILP), which selects both passenger and vehicle routes, such that travel demands are met with respect to minimized travel times for both operators and users. We apply MILP to the Parametric City, a generic city model developed by Fielbaum et al. [2]. While the infrastructure graph and demand are entirely rotation symmetric, asymmetric optimal line plans can occur. Using group theory, we analyze the properties of symmetric solutions and introduce a symmetry gap to measure their deviation of the optimum. We also develop a 1+1+2√g-approximation algorithm, depending only on the cost related parameter g. Supported by computational experiments, we conclude that in practice symmetric line plans provide good solutions for the line planning problem in the Parametric City.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-08-01
    Description: We consider the line planning problem in public transport in the Parametric City, an idealized model that captures typical scenarios by a (small) number of parameters. The Parametric City is rotation symmetric, but optimal line plans are not always symmetric. This raises the question to quantify the symmetry gap between the best symmetric and the overall best solution. For our analysis, we formulate the line planning problem as a mixed integer linear program, that can be solved in polynomial time if the solutions are forced to be symmetric. We prove that the symmetry gap is small when a specific Parametric City parameter is fixed, and we give an approximation algorithm for line planning in the Parametric City in this case. While the symmetry gap can be arbitrarily large in general, we show that symmetric line plans are a good choice in most practical situations.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-08-01
    Description: We present a method to estimate the transition rates of molecular systems under different environmental conditions which cause the formation or the breaking of bonds and require the sampling of the Grand Canonical Ensemble. For this purpose, we model the molecular system in terms of probable "scenarios", governed by different potential energy functions, which are separately sampled by classical MD simulations. Reweighting the canonical distribution of each scenario according to specific environmental variables, we estimate the grand canonical distribution, then we use the Square Root Approximation (SqRA) method to discretize the Fokker-Planck operator into a rate matrix and the robust Perron Cluster Cluster Analysis (PCCA+) method to coarse-grain the kinetic model. This permits to efficiently estimate the transition rates of conformational states as functions of environmental variables, for example, the local pH at a cell membrane. In this work we formalize the theoretical framework of the procedure and we present a numerical experiment comparing the results with those provided by a constant-pH method based on non-equilibrium Molecular Dynamics Monte Carlo simulations. The method is relevant for the development of new drug design strategies which take into account how the cellular environment influences biochemical processes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-08-08
    Description: In this article we study the connection of stochastic optimal control and reinforcement learning. Our main motivation is an importance sampling application to rare events sampling which can be reformulated as an optimal control problem. By using a parameterized approach the optimal control problem turns into a stochastic optimization problem which still presents some open questions regarding how to tackle the scalability to high-dimensional problems and how to deal with the intrinsic metastability of the system. With the aim to explore new methods we connect the optimal control problem to reinforcement learning since both share the same underlying framework namely a Markov decision process (MDP). We show how the MDP can be formulated for the optimal control problem. Furthermore, we discuss how the stochastic optimal control problem can be interpreted in a reinforcement learning framework. At the end of the article we present the application of two different reinforcement learning algorithms to the optimal control problem and compare the advantages and disadvantages of the two algorithms.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-08-04
    Description: The vanishing ideal of a set of points X is the set of polynomials that evaluate to 0 over all points x in X and admits an efficient representation by a finite set of polynomials called generators. To accommodate the noise in the data set, we introduce the Conditional Gradients Approximately Vanishing Ideal algorithm (CGAVI) for the construction of the set of generators of the approximately vanishing ideal. The constructed set of generators captures polynomial structures in data and gives rise to a feature map that can, for example, be used in combination with a linear classifier for supervised learning. In CGAVI, we construct the set of generators by solving specific instances of (constrained) convex optimization problems with the Pairwise Frank-Wolfe algorithm (PFW). Among other things, the constructed generators inherit the LASSO generalization bound and not only vanish on the training but also on out-sample data. Moreover, CGAVI admits a compact representation of the approximately vanishing ideal by constructing few generators with sparse coefficient vectors.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-09-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-09-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-09-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-09-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-12-19
    Description: In light of the energy transition production planning of future decarbonized energy systems lead to very large and complex optimization problems. A widely used modeling paradigm for modeling and solving such problems is mathematical programming. While there are various scientific energy system models and modeling tools, most of them do not provide the necessary level of detail or the modeling flexibility to be applicable for industrial usage. Industrial modeling tools, on the other hand, provide a high level of detail and modeling flexibility. However, those models often exhibit a size and complexity that restricts their scope to a time horizon of several months, severely complicating long-term planning. As a remedy, we propose a model class that is detailed enough for real-world usage but still compact enough for long-term planning. The model class is based on a generalized unit commitment problem on a network with investment decisions. The focus lies on the topological dependency of different energy production and transportation units.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2023-12-19
    Description: We performed a citation analysis on the Web of Science publications consisting of more than 63 million articles and 1.45 billion citations on 254 subjects from 1981 to 2020. We proposed the Article’s Scientific Prestige (ASP) metric and compared this metric to number of citations (#Cit) and journal grade in measuring the scientific impact of individual articles in the large-scale hierarchical and multi-disciplined citation network. In contrast to #Cit, ASP, that is computed based on the eigenvector centrality, considers both direct and indirect citations, and provides steady-state evaluation cross different disciplines. We found that ASP and #Cit are not aligned for most articles, with a growing mismatch amongst the less cited articles. While both metrics are reliable for evaluating the prestige of articles such as Nobel Prize winning articles, ASP tends to provide more persuasive rankings than #Cit when the articles are not highly cited. The journal grade, that is eventually determined by a few highly cited articles, is unable to properly reflect the scientific impact of individual articles. The number of references and coauthors are less relevant to scientific impact, but subjects do make a difference.
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-12-18
    Description: The locality of solution features in cardiac electrophysiology simulations calls for adaptive methods. Due to the overhead incurred by established mesh refinement and coarsening, however, such approaches failed in accelerating the computations. Here we investigate a different route to spatial adaptivity that is based on nested subset selection for algebraic degrees of freedom in spectral deferred correction methods. This combination of algebraic adaptivity and iterative solvers for higher order collocation time stepping realizes a multirate integration with minimal overhead. This leads to moderate but significant speedups in both monodomain and cell-by-cell models of cardiac excitation, as demonstrated at four numerical examples.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-12-18
    Description: Ehrenfest dynamics combined with real-time time-dependent density functional theory has proven to be a reliable tool to study non-adiabatic molecular dynamics with a reasonable computational cost. Among other possibilities, it allows for assessing in real time electronic excitations generated by ultra-fast laser pulses, as e.g., in pump–probe spectroscopy, and their coupling to the nuclear vibrations even beyond the linear regime. In this work, we present its implementation in the all-electron full-potential package exciting. Three cases are presented as examples: diamond and cubic boron nitride (BN) relaxed after an initial lattice distortion, and cubic BN exposed to a laser pulse. Comparison with the Octopus code exhibits good agreement.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-10-06
    Description: Robust adaptive beamforming (RAB) plays a vital role in modern communications by ensuring the reception of high-quality signals. This article proposes a deep learning approach to robust adaptive beamforming. In particular, we propose a novel RAB approach where the sample covariance matrix (SCM) is used as the input of a deep 1D Complex-Valued Convolutional Neural Network (CVCNN). The network employs complex convolutional and pooling layers, as well as a Cartesian Scaled Exponential Linear Unit activation function to directly compute the nearly-optimum weight vector through the training process and without prior knowledge about the direction of arrival of the desired signal. This means that reconstruction of the interference plus noise (IPN) covariance matrix is not required. The trained CVCNN accurately computes the nearly-optimum weight vector for data not used during training. The computed weight vector is employed to estimate the signal-to-interference plus noise ratio. Simulations show that the proposed RAB can provide performance close to that of the optimal beamformer.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-10-06
    Description: Background: Despite recent advances in cellular cryo-electron tomography (CET), developing automated tools for macromolecule identification in submolecular resolution remains challenging due to the lack of annotated data and high structural complexities. To date, the extent of the deep learning methods constructed for this problem is limited to conventional Convolutional Neural Networks (CNNs). Identifying macromolecules of different types and sizes is a tedious and time-consuming task. In this paper, we employ a capsule-based architecture to automate the task of macro- molecule identification, that we refer to as 3D-UCaps. In particular, the architecture is composed of three components: feature extractor, capsule encoder, and CNN decoder. The feature extractor converts voxel intensities of input sub-tomograms to activities of local features. The encoder is a 3D Capsule Network (CapsNet) that takes local features to generate a low-dimensional representation of the input. Then, a 3D CNN decoder reconstructs the sub-tomograms from the given representation by upsampling. Results: We performed binary and multi-class localization and identification tasks on synthetic and experimental data. We observed that the 3D-UNet and the 3D-UCaps had an F1−score mostly above 60% and 70%, respectively, on the test data. In both network architectures, we observed degradation of at least 40% in the F1-score when identifying very small particles (PDB entry 3GL1) compared to a large particle (PDB entry 4D8Q). In the multi-class identification task of experimental data, 3D-UCaps had an F1-score of 91% on the test data in contrast to 64% of the 3D-UNet. The better F1-score of 3D-UCaps compared to 3D-UNet is obtained by a higher precision score. We speculate this to be due to the capsule network employed in the encoder. To study the effect of the CapsNet-based encoder architecture further, we performed an ablation study and perceived that the F1-score is boosted as network depth is increased which is in contrast to the previously reported results for the 3D-UNet. To present a reproducible work, source code, trained models, data as well as visualization results are made publicly available. Conclusion: Quantitative and qualitative results show that 3D-UCaps successfully perform various downstream tasks including identification and localization of macro- molecules and can at least compete with CNN architectures for this task. Given that the capsule layers extract both the existence probability and the orientation of the molecules, this architecture has the potential to lead to representations of the data that are better interpretable than those of 3D-UNet.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-10-26
    Description: Die Handreichung soll Mitarbeiter:innen von kulturellen Einrichtungen bei der Digitalisierung von Audio- und Videomaterial unterstützten. Diese Einführung richtet sich besonders an Personen, die nicht mit dem Thema vertraut sind. Nach einer Einführung in die Geschichte von Ton- und Bildsignalen werden verschiedene Medientypen vorgestellt und der Umgang mit ihnen um eine Digitalisierung zu beginnen. Die Digitalisierung wird im Zusammenhang mit wichtigen Grundbegriffen und Parametern vorgestellt. Abgeschlossen wird die Handreichung durch Hinweise zur Qualitätsprüfung und Archivierung.
    Keywords: Digitalisierung ; Datenkompression ; Container 〈Informatik〉 ; Codec ; Tonsignal ; Bildsignal ; Bitrate ; Bildauflösung ; Bildformat ; Archiv ; Langzeitarchivierung ; Abtastung ; Restaurierung ; Archivierung
    Language: German
    Type: other , doc-type:Other
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...