Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 101
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 667-680 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Internal coordinates can be very helpful in modeling large biomacromolecules because freezing stiffer degrees of freedom, such as bond lengths, strongly reduces the number of variables describing the system. This, however, leads to difficulties in treating flexible rings such as the furanose sugars of nucleic acids or the proline residues of proteins, for which internal coordinates are an overcomplete description. We present here a new, internal coordinate furanose model based on the pseudorotational variables phase and amplitude which avoids having to solve a ring closure problem. The choice of a two- rather than a four-variable description is justified by a detailed analysis of molecular dynamic simulations. The efficiency and accuracy of the method are also demonstrated using extensive Monte Carlo simulations. This method of ring treatment is fast and well adapted to macromolecular simulations. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 133-145 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A procedure to represent Hartree-Fock electron densities in atoms [L. Fernandez Pacios, J. Comp. Chem., 14, 410 (1993)] defines ρ(r) as a reduced expansion of exponential functions. These analytically modeled densities (AMDs) are used in this article to develop a simple computational procedure for analyzing different atomic radii scales implemented in the commercial software system MATHEMATICA. The analysis is focused on the physical information associated to a given atomic radius as deduced from calculations depending on ρ(r). The amount of electron charge contained in the sphere of the given radius as well as the distinct contributions to the potential energy integrated up to that radius are obtained within the AMD formulation for main-group atoms H - Kr. The ASCII file needed to run the procedure within MATHEMATICA is also presented. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 146-153 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Results from ab initio self-consistent field (SCF) calculations with a 3-21G and a double-zeta-plus polarization (DZP) basis set on four low-energy conformations of cyclohexaglycine are reported. In agreement with results from semiempirical and molecular mechanics force field calculations, the lowest-energy conformation found at the DZP level is a conformation forming six C7 turns. However, the energy difference to the β-turn conformers is significantly smaller at the ab initio DZP level than calculated by the other methods. In contrast to the results obtained with some of the other methods, the present ab initio calculations show that both the double-type-I β turn and the double-type-II β-turn conformer of cyclohexaglycine are stable low-energy structures. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 898-913 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We propose a fast implementation of the boundary element method for solving the Poisson equation, which approximately determines the electrostatic field around solvated molecules of arbitrary shape. The method presented uses computational resources of order O(N) only, where N is the number of elements representing the dielectric boundary at the molecular surface. The method is based on the Fast Multipole Algorithm by Rokhlin and Greengard, which is used to calculate the Coulombic interaction between surface elements in linear time. We calculate the solvation energies of a sphere, a small polar molecule, and a moderately sized protein. The values obtained by the boundary element method agree well with results from finite difference calculations and show a higher degree of consistency due to the absence of grid dependencies. The boundary element method can be taken to a much higher accuracy than is possible with finite difference methods and can therefore be used to verify their validity. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 914-922 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An improved method for the calculation of enantioselectivity by molecular mechanics is presented. This method does not use any a priori assumption on the conformation of the molecules in the complex and is equally applicable to weak as well as very strong complexes. High-temperature molecular dynamics is used for the creation of a large number (5000-20,000) of random conformations and configurations of a 1:1 (or 1:2) complex of chiral molecules with a chiral selector. All configurations are energy minimized. The data set is only accepted if all lowest-energy complexes occur at least five times in the minimized data set. The enantioselectivity is then calculated from the free energies of the diasteromeric complexes (chiral chromatography) or from the ratio of the sum of the Boltzmann weights (distribution of enantiomers over a chiral organic phase and a nonchiral water phase). This approach has been successfully applied to a range of chiral compounds. These include a weakly bonded Pirkle chiral stationary phase (CSP) system, a strong complex of diprotonated 1,2-diphenyl-1,2-diamino-ethane with two molecules of R,R-tartrate, and the intermediate-strength complexes of protonated and of neutral norephedrine with R,R-tartrate. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The molecular structures of the H-chromophore of the indigoid dyes and five other isomers are studied by ab initio MP2/6-31 + G*//HF/6-31 + G* method. The bond angles are affected by the π-electron conjugation. The molecular structures of the H-chromophores and indigoid dyes indicate that the benzene rings and the five-membered rings are structurally important. The absorption maxima of the H-chromophores are successfully calculated by CI-singles-MP2/6-31 + G* theory for the first time and correspond to the HOMO, LUMO transition. All these transitions are the π-π* transitions. Like the indigoid dyes, trans isomers have the bathochromic shifts of the absorption maxima, and the bathochromic shifts are found with the best donor group of —NH. From these calculations, the absorption maxima of some indigoid dyes can be explained by their H-chromophores qualitatively. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 984-1010 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio molecular orbital calculations have been carried out on over 50 model organic molecules and ions to provide the data necessary in the determination of torsional parameters for a force field involving polypeptides. The rotational energy profiles were obtained at the HF/6-31G*//HF/6-31G* level. The results were supported, in many cases, by full geometry optimizations and with consideration of correlation corrections at the MP2 level. With the exception of the dihedral angle being studied, all of the molecules were fully optimized with C1 symmetry. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 576-585 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The equilibrium bond distances, harmonic frequencies, and bond dissociation energies of the 21 homonuclear diatomics Li2 - F2, Na2 - Cl2, and K2 - Br2 have been determined using approximate density functional theory (DFT) employing various widely used functionals and basis sets ranging from single zeta to triple zeta plus polarization quality. The results are in general much less sensitive to the size of the basis set as in conventional ab initio molecular orbital (MO) theory, while the choice of the functional is of much more significance. For one basis set (6-311G*), the performance of the DFT-based calculations has been compared and found to be superior to Hartree-Fock (HF) Møller Plesset second order perturbation theory (MP2), or configuration interaction with single and double excitations (CISD) calculations. Particularly, no pathological cases, such as the group 2 dimers (Be2, Mg2, Ca2), are observed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 9 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 263-272 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio calculations on the structure of pyrazole have been carried out at different levels of accuracy. At the Hartree-Fock (HF) level, the performance of several basis sets, namely 3-21G, 6-31G, 6-31G**, and 6-311G** was investigated. The influence of electron correlation effects also was studied by carrying out geometry optimizations at the MP2, MP4, and QCISD levels. The performance of a density functional method also was evaluated. We have also investigated the possible influence of the frozen core approximation on the final optimized geometry. Three different statistical analyses were considered in determining which geometry is closest to the experimental microwave geometry - namely Paul Curtin's diagrams, cluster analysis, and multidimensional scaling. From these analyses, we conclude that there is no asymptotic approach to the experimental geometry by increasing the quality of the theoretical model, although, as expected, the more reliable structures are those obtained at the MP2, MP4, and QCISD levels, as well as those obtained by the B3LYP density functional method. We have also found that the values of the rotational constants are a tight criterion to define the quality of a molecular geometry. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 243-261 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present molecular mechanics calculations on the conformational energies of several 2,2-dimethyl-trans-4,6-disubstituted-1,3-dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist-boat forms of these 1,3-dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high-level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic-potential-based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6-31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6-31G* relative conformational energies of the unsubstituted compound 2,2,4-trimethyl-1,3-dioxane, the absolute energy differences calculated with this new model between the chair and twist-boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6-31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(—O—C—O—C—) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1-dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3-dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower-level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1238-1249 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new method is proposed for the evaluation of numerical similarity measures for large molecules, defined in terms of their electron density (ED) distributions. The technique is based on the Molecular Electron Density Lego Assembler (MEDLA) approach, proposed earlier for the generation of ab initio quality electron densities for proteins and other macromolecules. The reliability of the approach is tested using a family of 13 substituted aromatic systems for which both standard ab initio electron density computations and the MEDLA technique are applicable. These tests also provide additional examples for evaluating the accuracy of the MEDLA technique. Electron densities for a series of 13 substituted benzenes were calculated using the standard ab initio method with STO-3G, 3-21G, and 6-31G** basis sets as well as the MEDLA approach with a 6-31G** database of electron density fragments. For each type of calculation, pairwise similarity measures of these compounds were calculated using a point-by-point numerical comparison of the EDs. From these results, 2D similarity maps were constructed, serving as an aid for quick visual comparisons for the entire molecular family. The MEDLA approach is shown to give virtually equivalent numerical similarity measures and similarity maps as the standard ab initio method using a 6-31G** basis set. By contrast, significant differences are found between the standard ab initio 6-31G** results and the standard ab initio results obtained with smaller STO-3G and 3-21G basis sets. These tests indicate that the MEDLA-based similarity measures faithfully mimic the actual, standard ab initio 6-31G** similarity measures, suggesting the MEDLA method as a reliable technique to assess the shape similarities of proteins and other macromolecules. The speed of the MEDLA computations allows rapid, pairwise comparisons of the actual EDs for a series of molecules, requiring no more computer time than other simplified, less detailed representations of molecular shape. The MEDLA method also reduces the need to store large volumes of numerical density data on disk, as these densities can be quickly recomputed when needed. For these reasons, the proposed MEDLA similarity analysis technique is likely to become a useful tool in computational drug design. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1291-1300 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The availability of massively parallel computers with high computation rates but limited memory and input/output bandwidth prompts the reevaluation of appropriate solution schemes for the self-consistent field (SCF) equations. Several algorithms are considered which exhibit between linear and quadratic convergence using various approximations to the orbital Hessian. A prototype is developed to understand the computational expense of each approach. The optimal choice is found to be a conjugate-gradient method preconditioned with a level-shifted approximation to the orbital Hessian. This is a compromise between efficiency, stability, and low memory usage. Sample benchmarks on two parallel supercomputers are also reported. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 296-310 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The potential energy hypersurfaces (PES) of several carbohydrate molecules were studied with a new algorithm for conformational searches, CICADA (Channels in Conformational Space Analyzed by Driver Approach) interfaced with the molecular mechanics program MM3(92). The method requires (1) one or a few low-energy conformations as starting points; and (2) designation of the torsion angles important for understanding the conformational behavior of the molecule. The PES is explored by driving separately each selected torsion angle (in both directions) with a concomitant full-geometry optimization at each increment (except for the driven angle). When a minimum has been detected, the molecule is freely optimized, and the minima so detected are then stored if not encountered previously. The new minima serve as starting structures for further explorations. The results from CICADA permit prediction of relative and absolute flexibility and conformational softness for both the entire molecule as well as for individual group rotations and local minima. The carbohydrates analyzed were Me-α-D-glucopyranoside, β-D-GlcNAc(1-2)α-D-Man, and α-D-GalNAc(1-3)[α-L-Fuc(1-2)]Gal-O-Me. All the low-energy conformers along with the transition states and flexibilities features were characterized. CICADA found all minima and low-energy conversion pathways for the disaccharide that were found by a traditional grid search. In contrast to the grid search method, CICADA concentrates mostly on the exploration of the low-energy regions of the PES, thereby saving a significant amount of computational time. The performance of the method opens new routes for exploring conformational space of larger molecules, such as oligosaccharides. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 365-369 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In this article we observe that generally symplectic integrators conserve angular momentum exactly, whereas nonsymplectic integrators do not. We show that this observation extends to multiple timesteps and to constrained dynamics. Both of these devices are important for efficient molecular dynamics simulations. © 1995 by John Wiley & Sons, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: To model the physical properties of sterols and related species, an all-atom Class II force field has been derived based on the recently reported CFF93 force field for hydrocarbons. It has been tested using both energy minimization and molecular dynamics (MD) simulations of the low-temperature neutron-diffraction structure of cholesteryl acetate crystals and the X-ray diffraction crystal structure of cholesterol. Thus these studies test the techniques and limitations of high-accuracy crystal simulations as well. Employing energy minimization, all cell vectors and volumes were reproduced to within 2.4% of experimental values. For cholesteryl acetate, the root mean square (rms) deviations between the calculated and experimental bond lengths, angles, and torsions of nonhydrogen atoms are 0.013 Å, 1.2°, and 2.4°, respectively. The corresponding maximum deviations are also very small: 0.027 Å for bond length, 3.2° for angle, and 7.6° for torsion. For cholesterol, good agreement between the calculated and experimental structures was found only when the comparison was limited to atoms with relatively small thermal factors (Beq 〈 15 Å2). It was found that for both systems, the MD averaged structures were in better agreement with the experimental ones than the energy minimized structures, since the rms deviations in atom positions are smaller for the MD-averaged structures (0.064 Å for cholesteryl acetate and 0.152 Å for cholesterol) than those for the minimized structures (0.178 Å for cholesteryl acetate and 0.189 Å for cholesterol). The force field was then applied to isolated molecules focusing on the rigidity of the cholesteryl ring and cholesterol-cholesterol interaction energies. It is concluded that the cholesteryl ring is fairly rigid since no major conformational change was observed during an MD simulation of a single cholesterol molecule in vacuo at 500 K, in agreement with condensed phase experiments. Calculations of cholesterol-cholesterol pairs suggest that there are only four low-energy configurations and that it is more useful to describe each molecule as having a plane (flat face) and two grooves rather than as having two (one flat and one rough) faces. This provides some insight into the equilibrium crystal structures. Limited results from a modified Class I (CVFF) force field are presented for comparison. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 937-944 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Atomic multipole moments, calculated from ab initio wave functions, offer an attractive way toward an improvement of the description of electrostatic interactions in force-field programs. Accordingly, we have implemented the formulas for calculation of energies, forces, and torques resulting from the interactions of multipoles up to quadrupole-quadrupole interactions in our force-field program MOMO. The method was successfully applied to various problems, including conformational analysis, hydrogen bonding, and π-π interactions. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 441-444 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A direct inversion procedure is used to obtain the pair interaction potentials for He and Ne from the extended law of corresponding states over the temperature range from absolute zero to the onset of ionization. We have used the experimentally reduced viscosity collision integrals obtained from the corresponding states correlation and performed an INVERT to determine the reduced potential energy curve corresponding to the collision integral. This directly determined potential is in excellent agreement with the potential independently obtained from molecular beam scattering measurements. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 478-485 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The three-dimensional structure of the carboxyl-terminal region of the human ras oncogenic protein (called p21) has been determined using the HDMC (High-directional Monte Carlo) method combined with MD (molecular dynamics) simulation. A truncated p21 containing residues 1-171 without the carboxyl-terminal end was analyzed using X-ray crystallography by Kim et al. It has been well documented that the carboxyl-terminal region of p21 is flexible and plays an important role in transmitting a signal from the membrane-attached domain. We have carried out the theoretical calculation for 18 undefined residues, which correspond to residues 172-189 of intact p21, in addition to seven residues (165-171) from X-ray coordinates of the C-terminal end of human C—Ha—ras protein. In this calculation, the main-chain atoms of residues 165-169 have been fitted to X-ray structure, and the remaining region has been allowed to move during the conformational analysis. We have confirmed that revised HDMC can easily alter the local minima of the polypeptide chains as the internal vibrations of molecules are allowed by MD simulation. Throughout this study, we suggest that the C-terminal end of human C—Ha—ras p21 protein has structures in the forms of an α helix for 165-172, a loop for 173-180, and an α helix for 181-187 regions, like the helical hairpin. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1045-1054 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio molecular orbital (MO) calculations are carried out on the nonidentity allyl transfer processes, X- + CH2CHCH2Y ⇌ CH2CHCH2 X + Y-, with X- = H, F, and Cl and Y = H, NH2, OH, F, PH2, SH, and Cl. The Marcus equation applies well to the allyl transfer reactions. The transition state (TS) position along the reaction coordinate and the TS structure are strongly influenced by the thermodynamic driving force, whereas the TS looseness is originated from the intrinsic barrier. The intrinsic barrier, ΔE0
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1081-1095 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The accuracy and simplicity of the Poisson-Boltzmann electrostatics model has led to the suggestion that it might offer an efficient solvent model for use in molecular mechanics calculations on biomolecules. We report a successful merger of the Poisson-Boltzmann and molecular dynamics approaches, with illustrative calculations on the small solutes dichloroethane and alanine dipeptide. The algorithm is implemented within the program UHBD. Computational efficiency is achieved by the use of rather coarse finite difference grids to solve the Poisson-Boltzmann equation. Nonetheless, the conformational distributions generated by the new method agree well with reference distributions obtained as Boltzmann distributions from energies computed with fine finite difference grids. The conformational distributions also agree well with the results of experimental measurements and conformational analyses using more detailed solvent models. We project that when multigrid methods are used to solve the finite difference problem and the algorithm is implemented on a vector supercomputer, the computation of solvent electrostatic forces for a protein of modest size will add only about 0.1 s computer time per simulation step relative to a vacuum calculation. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1131-1140 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A parallel version of the popular molecular mechanics package AMBER suitable for execution on workstation clusters has been developed. Computer-intensive portions of molecular dynamics or free-energy perturbation computations, such as nonbonded pair list generation or calculation of nonbonded energies and forces, are distributed across a collection of Unix workstations linked by Ethernet or FDDI connections. This parallel implementation utilizes the message-passing software PVM (Parallel Virtual Machine) from Oak Ridge National Laboratory to coordinate data exchange and processor synchronization. Test simulations performed for solvated peptide, protein, and lipid bilayer systems indicate that reasonable parallel efficiency (70-90%) and computational speedup (2-5 × serial computer runtimes) can be achieved with small workstation clusters (typically six to eight machines) for typical biomolecular simulation problems. PVM-AMBER is also easily and rapidly portable to different hardware platforms due to the availability of PVM for numerous computers. The current version of PVM-AMBER has been tested successfully on Silicon Graphics, IBM RS6000, DEC ALPHA, and HP 735 workstation clusters and heterogeneous clusters of these machines, as well as on CRAY T3D and Kendall Square KSR2 parallel supercomputers. Thus, PVM-AMBER provides a simple and cost-effective mechanism for parallel molecular dynamics simulations on readily available hardware platforms. Factors that affect the efficiency of this approach are discussed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1141-1152 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The efficient evaluation of polarizable molecular mechanics potentials on distributed memory parallel computers is discussed. The program executes at 7-10 Mflops/node on a 32-node CM-5 partition and is 19 times faster than comparable code running on a single-processor HP 9000/735. On the parallel computer, matrix inversion becomes a practical alternative to the commonly used iterative method for the calculation of induced dipole moments. The former method is useful in cases such as free-energy perturbation (FEP) simulations, which require highly accurate induced dipole moments. Matrix inversion is performed 110 times faster on the CM-5 than on the HP. We show that the accuracy which is needed for FEP calculations with polarization can be obtained by either matrix inversion or by performing a large number of iteration cycles to satisfy convergence tolerances that are less than 10-6 D. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1164-1169 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In the process of studying the solvation of simple hydrocarbons, we found that the nonbond van der Waals (vdw) parameters for the TIP3P water model could be adjusted without significantly changing its liquid water properties. By increasing the van der Waals well depth ∊ from 0.152 kcal/mol for the TIP3P model to 0.190 kcal/mol (model TIP3P_MOD), the solvation free energy of all-atom methane changed from 2.5 kcal/mol to 2.1 kcal/mol, much closer to the experimental value of 2.0 kcal/mol. This change of van der Waals parameters does not change hydrophilic solvation, since calculations using either water model lead to the same relative solvation free energy between ethane and methanol. The solvation free-energy differences between methane and ethane and between ethane and propane have also been calculated with both models, and results found with the two water models are similar. For the united-atom hydrocarbon model, however, the solvation free energy of methane changed from 2.1 kcal/mol with TIP3P to 1.8 kcal/mol with TIP3P_MOD. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1192-1209 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In molecular dynamics simulations, the fastest components of the potential field impose severe restrictions on the stability and hence the speed of computational methods. One possibility for treating this problem is to replace the fastest components with algebraic length constraints. In this article the resulting systems of mixed differential and algebraic equations are studied. Commonly used discretization schemes for constrained Hamiltonian systems are discussed. The form of the nonlinear equations is examined in detail and used to give convergence results for the traditional nonlinear solution technique SHAKE iteration and for a modification based on successive overrelaxation (SOR). A simple adaptive algorithm for finding the optimal relaxation parameter is presented. Alternative direct methods using sparse matrix techniques are discussed. Numerical results are given for the new techniques, which have been implemented in the molecular modeling software package CHARMM and show as much as twofold improvement over SHAKE iteration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1250-1260 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: High-level ab initio calculations have been performed on N-methyl-N-methyleneammonium and related compounds to obtain accurate rotational barriers, structures, and vibrational frequencies. The 6-31G** basis set has been utilized at the Hartree-Fock level of theory for these calculations because little experimental data are available. The MM2(91) and MM3(94) force fields have been parameterized to include these nonconjugated charged nitrogen-containing compounds. Molecular mechanics geometries and vibrational frequencies compare well with the ab initio results. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1271-1290 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article describes an extension to previously developed constraint techniques. These enhanced constraint methods will enable the study of large computational chemistry problems that cannot be easily handled with current constrained molecular dynamics (MD) methods. These methods are based on an O(N) solution to the constrained equations of motion. The benefits of this approach are that (1) the system constraints are solved exactly at each time step, (2) the solution algorithm is noniterative, (3) the algorithm is recursive and scales as O(N), (4) the algorithm is numerically stable, (5) the algorithm is highly amenable to parallel processing, and (6) potentially greater integration step sizes are possible. It is anticipated that application of this methodology will provide a 10- to 100-improvement in the speed of a large molecular trajectory as compared with the time required to run a conventional atomistic unconstrained simulation. It is, therefore, anticipated that this methodology will provide an enabling capacity for pursuing the drug discovery process for large molecular systems. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1301-1313 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Two algorithms are presented for parallel direct computation of energies with second-order perturbation theory. Closed-shell MP2 theory as well as the open-shell perturbation theories OPT2(2) and ZAPT2 have been implemented. The algorithms are designed for distributed memory parallel computers. The first algorithm exhibits an excellent load balance and scales well when relatively few processors are used, but a large communication overhead reduces the efficiency for larger numbers of processors. The other algorithm employs very little interprocessor communication and scales well for large systems. In both implementations the memory requirement has been reduced by allowing the two-electron integral transformation to be performed in multiple passes and by distributing the (partially) transformed integrals between processors. Results are presented for systems with up to 327 basis functions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1339-1350 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The recently formulated weighted histogram analysis method (WHAM)1 is an extension of Ferrenberg and Swendsen's multiple histogram technique for free-energy and potential of mean force calculations. As an illustration of the method, we have calculated the two-dimensional potential of mean force surface of the dihedrals gamma and chi in deoxyadenosine with Monte Carlo simulations using the all-atom and united-atom representation of the AMBER force fields. This also demonstrates one of the major advantages of WHAM over umbrella sampling techniques. The method also provides an analysis of the statistical accuracy of the potential of mean force as well as a guide to the most efficient use of additional simulations to minimize errors. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1357-1377 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present the derivation of charges of ribo- and deoxynucleosides, nucleotides, and peptide fragments using electrostatic potentials obtained from ab initio calculations with the 6-31G* basis set. For the nucleic acid fragments, we used electrostatic potentials of the four deoxyribonucleosides (A, G, C, T) and four ribonucleosides (A, G, C, U) and dimethylphosphate. The charges for the deoxyribose nucleosides and nucleotides are derived using multiple-molecule fitting and restrained electrostatic potential (RESP) fits,1,2 with Lagrangian multipliers ensuring a net charge of 0 or ± 1. We suggest that the preferred approach for deriving charges for nucleosides and nucleotides involves allowing only C1′ and H1′ of the sugar to vary as the nucleic acid base, with the remainder of sugar and backbone atoms forced to be equivalent. For peptide fragments, we have combined multiple conformation fitting, previously employed by Williams3 and Reynolds et al.,4 with the RESP approach1,2 to derive charges for blocked dipeptides appropriate for each of the 20 naturally occuring amino acids. Based on our results for propyl amine,1,2 we suggest that two conformations for each peptide suffice to give charges that represent well the conformationally dependent electrostatic properties of molecules, provided that these two conformations contain different values of the dihedral angles that terminate in heteroatoms or hydrogens attached to heteroatoms. In these blocked dipeptide models, it is useful to require equivalent N - H and C=O charges for all amino acids with a given net charge (except proline), and this is accomplished in a straightforward fashion with multiple-molecule fitting. Finally, the application of multiple Lagrangian constraints allows for the derivation of monomeric residues with the appropriate net charge from a chemically blocked version of the residue. The multiple Lagrange constraints also enable charges from two or more molecules to be spliced together in a well-defined fashion. Thus, the combined use of multiple molecules, multiple conformations, multiple Lagrangian constraints, and RESP fitting is shown to be a powerful approach to deriving electrostatic charges for biopolymers. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1420-1427 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We have implemented a portable parallel version of the macromolecular modeling package AMBER4. The message passing paradigm was used. All message passing constructs are compliant with the Message Passing Interface (MPI) standard. The molecular dynamics/minimization module MINMD and the free-energy perturbation module Gibbs have been implemented in parallel on a number of machines, including a Cray T3D, an IBM SP1/SP2, and a collection of networked workstations. In addition, the code has been tested with an MPI implementation from Argonne National Laboratories/Mississippi State University which runs on many parallel machines. The goal of this work is to decrease the amount of time required to perform molecular dynamics simulations. Performance results for a lipid bilayer molecular dynamics simulation on a Cray T3D, an IBM SP1/SP2, and a Cray C90 are compared. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1434-1444 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A genetic algorithm is used to minimize the energy of peptide analogues in the dihedral angle space. It is interfaced to MOPAC, which computes the energy employing the AM1 Hamiltonian. The genetic algorithm identified the global energy minimum of glycine dipeptide analogue, alanine dipeptide analogue, diglycine, and dialanine. It identified three low-energy conformations of tetraalanine, including the reported global minimum, all of which contained three hydrogen bonds. A structure with a lower energy than the reported global minimum has been generated in which one hydrogen bond is replaced by another one. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 923-936 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An artificial neural network (ANN) method for the prediction of force constants of chemical bonds in large, polyatomic molecules was developed. The force constant information evaluated is to be used for generating accurate estimates of the Hessian used in Newton-Raphson-type ab initio molecular structure optimization schemes. Different network topologies as well as a training procedure based on simulated annealing are evaluated. The results show that an ANN can be designed and trained to provide force constant information within a 1.5 to 5% error band even if the range of the force constants evaluated is very large (from triple bonds to hydrogen bridges). © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 951-972 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An empirical modified boundary potential has been derived to correct the structural perturbations arising from the presence of the vacuum boundary in the simulation of spherical TIP4P water systems. The potential is parameterized for a 12.0-Å sphere of TIP4P water and gives improved number density and orientational sampling behavior. It is also transferable to both larger and smaller simulation systems with only a moderate degradation in performance. Free-energy calculations have been conducted for the perturbation of a TIP4P water molecule to methane under aqueous conditions, and the modified boundary potential gives results consistent with those from simulations using periodic boundary conditions. However, simple half-harmonic boundary potentials give unsatisfactory number density, orientational sampling, and free-energy results. Moreover, use of the modified boundary potential results in a negligible increase in simulation time. It is envisaged that the modified boundary potential will find use in free-energy perturbation calculations on proteins with a solvent sphere centered on the active site. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 56-79 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio self-consistent field (SCF) Hartree-Fock calculations of sulfates R—O—SO3(-1) (R = Me, Et, i-Pr) and sulfamates R—NHSO3(-1) (R = H, Me, Et, i-Pr) were performed at the 4-31G(*S*N) //3-21G(*S*N) basis set levels, where asterisks indicate d functions on sulfur and nitrogen atoms. These standard levels were determined by comparing calculation results with several basis sets up to MP2/6-31G*//6-31G*. Several conformations per compound were studied to obtain molecular geometries, rotational barriers, and potential derived point charges. In methyl sulfate, the rotational barrier around the C—O bond is 1.6 kcal/mol at the MP2 level and 1.4 kcal/mol at the standard level. Its ground state has one of three HCOS torsion angles trans and one of three COSO torsion angles trans. Rotation over 60° around the single O—S bond in the sulfate group costs 2.5 kcal/mol at the MP2 and 2.1 kcal/mol at the standard level. For ethyl sulfate, the calculated rotational barrier in going from the ground state, which has its CCOS torsion angle trans, to the syn-periplanar conformation (CCOS torsion angle cis) is 4.8 kcal/mol. However, a much lower barrier of 0.7 kcal/mol leads to a secondary gauchelike conformation about 0.4 kcal/mol above the ground state, with the CCOS torsion angle at 87.6°. Again, one of the COSO torsion angles is trans in the ground state, and the rotational barrier for a 60° rotation of the sulfate group amounts to 1.8 kcal/mol. For methyl sulfamate, the rotational barriers are 2.5 kcal/mol around the C—N bond and 3.3 kcal/mol around the N—S bond. This is noteworthy because sulfamate itself has a calculated rotational barrier around the N—S bond of only 1.7 kcal/mol. These and other data were used to parameterize the well-known empirical force fields AMBER and CHARMm. When the new fields were tested by means of vibrational frequency calculations at the 6-31G*//6-31G* level for methyl sulfate, sulfamate, and methyl sulfamate ground states, the frequencies compared favorably with the AMBER and CHARMm calculated frequencies. The transferability of the force parameters to β-D-glucose-6-sulfate and isopropyl sulfate appears to be better than to isopropyl sulfamate. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 113-128 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In this article we describe the coupling of a density functional (DF) Hamiltonian with the molecular mechanics (MM) potential function AMBER. We examine a series of test cases in which we compare the binding energies and geometries of the complexes predicted by this coupled potential with those predicted by other theoretical methods and experiment to establish the relative accuracy of the DF/MM coupled potential. We find that the DF/MM coupled potential performs well in most cases studied and, in general, outperforms the semiempirical/MM approach. The interaction energies and structures obtained using this method appear to be insensitive to the use of nonlocal (NL) corrections to the DF method. The is fortuitous because the NL treatment is significantly more computationally expensive than the local treatment. However, NL corrections may be required to predict accurately the shape of potential energy surfaces that involve bond breaking and formation. The DF/MM method has also been applied to the determination of the solvation free energy for a series of ions using free-energy perturbation methods. The results obtained are good and can be improved by a simple scaling of the Lennard-Jones parameters for the ion in question. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 20-30 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new formulation (CLS-PCM) for the calculation of the apparent surface charges in the framework of the ab initio polarizable continuum model of the solvent (PCM) is introduced. Its performance is compared with that of the original iterative version (ITER-PCM) of the method as well as with a matricial alternative formulation (matrix-BEM-PCM) of the same problem. Both CLS-PCM and matrix-BEM-PCM have shown to be computationally more efficient than ITER-PCM without presenting any problems associated with the convergence of the process. Although for small and medium-size solutes the use of matrix-BEM-PCM is recommended, for neutral solutes of larger size the use of CLS2 becomes computationally more convenient. Finally, for very large-size systems, compromise between matrix storage requirements, time of calculation, and exactness of the results may make preferable the use of the more approximate CLS1 formalism, possibly in conjunction with semiempirical or semiclassical descriptions of the solute. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 31-36 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The geometries of a fourfold bridged tricyclo[4.2.0.02,5]octa-3,7-diene (1) and its photoproducts 2 and 3 were calculated by Hartree-Fock ab initio (3-21G and DZP basis) and semiempirical (MNDO, AM1, MINDO /3) methods. It was found that due to the smaller distance between the double bonds in 1 (2.65 Å) as compared to the parent tricyclo[4.2.0.02,5]octa-3,7-diene (4) (2.91 Å), the sequence of the frontier orbitals is different. In the case of 1, the photochemical [2 + 2]cycloaddition is allowed, whereas in 4 it is forbidden. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1-19 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The point-chart approximation of the Miertus-Scrocco-Tomasi solvation model (MST-PC) based on a continuum representation of the solvent has been incorporated in force field calculations. Application in molecular mechanics (MM) involves conformational equilibria in solution: rotational isomers of ethylene glycol (I), 1,2-difluoreothane (II), fluoroacetic acid (III), and representative conformers of macrocyclic receptors such as 18-crown-6 (IV), cryptand 2.2.2 (V), and t-butyl-calix[4]arenetetraamide (VI). Assessment of the MST-PC results is based on the comparison with ab initio reactive field calculations (for I-III), with the continuum model of Still (W. C. Still et al., J. Am. Chem. Soc., 1990, 112, 6127) (for I-VI), and with average solute-solvent interaction energies obtained from molecular dynamics (MD) simulations with explicit solvent in water (I-VI) and in acetonitrile (IV-VI). It is demonstrated that the continuum solvent model qualitatively reproduces the trends in solvation energies in water. The few exceptions may be related to particular topological features of the solute. An improved discrete/continuum approach in which some first-shell solvent molecules are considered as a part of the solute embedded in the dielectric continuum provides more realistic results, as is shown for VI in water. The MST-PC model which mimics the solute-solvent electrostatic interaction only fails to reproduce conformationally dependent solvation energies in acetonitrile, in which the electrostatic contribution is relatively small compared to van der Waals interactions. Exploratory MD simulations within the continuum model in water are reported on urea and 18-crown-6. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 37-55 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The embedding of a quantum mechanically described subsystem by classical representations of its surroundings is reviewed. The choices for a distributed monopole representation and a distributed (group) polarizability representation, as well as the continuum approach to model bulk effects, are discussed. Focus is on the practical implementation of the classical description in quantum chemistry codes (in particular, HONDO8.1). Expressions are given for the self-consistent coupling between the classical partitions (dipole polarizabilities and boundary surface dipoles and charges) and for the coupling between classical and quantum partitions. The latter is mediated through expanded, rather than exact, potentials and fields. In this way, the computation of only a limited number of formal interactions between unit charge distributions located at the expansion centers suffices to evaluate the reaction field contributions. The electronic part of the coupling can be included in the Hamiltonian via the Fock matrix. The field operators, as well as the one- and two-electron matrix elements over the basis functions, are simple. The expressions for these are given explicitly.Nonequilibrium potentials and Monte Carlo sampling over classical degrees of freedom have been added to better mimic experimental conditions. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 91-104 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A parallel direct self-consistent field (SCF) algorithm for distributed memory computers is described. Key features of the algorithm are its ability to achieve a load balance dynamically, its modest memory requirements per processor, and its ability to utilize the full eightfold index permutation symmetry of the two-electron integrals despite the fact that entire copies of the Fock and density matrices are not present in each processor's local memory. The algorithm is scalable and, accordingly, has the potential to function efficiently on hundreds of processors. With the algorithm described here, a calculation employing several thousand basis functions can be carried out on a distributed memory machine with 100 or more processors each with just 4 MBytes of RAM and no disk. The Fock matrix build portion of the algorithm has been implemented on a 16-node Intel iPSC/2. Results from benchmark calculations are encouraging. The algorithm shows excellent load balance when run on 4, 8, or 16 processors and displays almost ideal speed-up in going from 4 to 16 processors. Preliminary benchmark calculations have also been carried out on an Intel Paragon. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 105-112 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Feynman's path integral formulation of quantum statistical mechanics, which has commonly been applied be Monte Carlo methods, is now also implemented by traditional molecular dynamics simulations of the microcanonical ensemble and in the Nosé-Hoover method simulating the isothermal-isobaric ensemble. In this article these two methods are applied to solid and liquid neon, in which quantum effects are not negligible. The validity of the procedure is shown by comparison with Monte Carlo and Brownian Dynamics computer simulations and with experiment. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 129-129 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 80-90 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The geometric molecular dissimilarity between two molecules is defined as the difference between the volume of their union minus the volume of their intersection. This dissimilarity has the mathematical properties of a distance. This distance is minimized under all rotations and translations using a discrete Broyden, Fletcher, Goldfarb & Shanno (B.F.G.S.) algorithm. The optimal geometric superimposition of saxitoxin and tetrodotoxin is discussed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 130-130 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 328-336 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An analytic expression for protein atomic displacements in Cartesian coordinate space (CCS) against small changes in dihedral angles is derived. To study time-dependent dynamics of a native protein molecule in CCS from dynamics in the internal coordinate space (ICS), it is necessary to convert small changes of internal coordinate variables to Cartesian coordinate variables. When we are interested in molecular motion, six degrees of freedom for translational and rotational motion of the molecule must be eliminated in this conversion, and this conversion is achieved by requiring the Eckart condition to hold. In this article, only dihedral angles are treated as independent internal variables (i.e., bond angles and bond lengths are fixed), and Cartesian coordinates of atoms are given analytically by a second-order Taylor expansion in terms of small deviations of variable dihedral angles. Coefficients of the first-order terms are collected in the K matrix obtained previously by Noguti and Go (1983) (see ref. 2). Coefficients of the second-order terms, which are for the first time derived here, are associated with the (newly termed) L matrix. The effect of including the resulting quadratic terms is compared against the precise numerical treatment using the Eckart condition. A normal mode analysis (NMA) in the dihedral angle space (DAS) of the protein bovine pancreatic trypsin inhibitor (BPTI) has been performed to calculate shift of mean atomic positions and mean square fluctuations around the mean positions. The analysis shows that the second-order terms involving the L matrix have significant contributions to atomic fluctuations at room temperature. This indicates that NMA in CCS involves significant errors when applied for such large molecules as proteins. These errors can be avoided by carrying out NMA in DAS and by considering terms up to second order in the conversion of atomic motion from DAS to CCS. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 385-394 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A simple and efficient procedure of calculating molecular volume (VM) based on the Monte Carlo method is presented. The volume of a molecule is defined by the volume occupied by the 0.001-au electron density envelope. We have employed this method to compute the molecular volumes (VM) of a large selection of organic molecules and compare them with the corresponding molar volumes (Vm) measured in the liquid state. A strong correlation is found to exist between the VM and Vm values (VM/Vm ≈ 0.75). Using this linear relationship, the calculated molecular volume may provide an estimate of the cavity-volume parameter in solvent-effect calculations. As a chemical application of molecular volume, we have investigated the conformational equilibrium of 1,2-difluoroethane in the liquid state using the self-consistent reaction field theory. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 395-404 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A parallel distributed implementation of the second-order Møller-Plesset perturbation theory method, widely used in quantum chemistry, is presented. Parallelization strategy and performance for the HONDO quantum chemistry program running on a network of Unix computers are also discussed. Superlinear speedups are obtained through a combined use of the CPU and memory of the different processors. Performance for standard and direct algorithms are presented and discussed. A superdirect algorithm that eliminates the communication bottleneck during the integral transformation step is also proposed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 235-242 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The statistical properties of the bilayer membranes of diparmitoylphosphatidylcholine (DPPC) in the gel and liquid-crystal phases were studied by Monte Carlo (MC) simulation using potential functions of the Lennard-Jones, the simple Coulomb, and the bond torsion. The simulation was undertaken on a two-dimensional periodic condition imposed on the bilayer model consisting of faithfully described molecules. The structure and ordering of the model bilayers accorded well with experiments, and the segment order parameters were in agreement with those of the nuclear magnetic resonance (NMR) experiments. The two kinds of lipid chains of DPPC do not equivalently behave in the bilayers, and chain 2 has lower ordering than chain 1. The order parameters of the first eight segments of chain 2 in the liquid-crystal model are particularly small and are roughly constant. From electron density analysis, it has been observed that the liquid-crystal bilayer has about one excess water molecule per one lipid molecule in comparison with the gel bilayer. The energy difference between the two bilayer models, taking account of the water contribution, is consistent with the latent heat of the phase transition. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 715-722 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Algorithms to enhance parallel performance of molecular dynamics simulations on parallel computers by dynamic load balancing are described. Load balancing is achieved by redistribution of work based on either a history of time spent computing per processor or on the number of pair interactions computed per processor. The two algorithms we detail are designed to yield optimal load balancing on both workstation clusters and parallel supercomputers. We illustrate these methods using a small molecular dynamics kernel developed for the simulation of rigid molecular solvents. In addition, we discuss our observation regarding global communications performance on workstation clusters with a fiber distributed data interface (FDDI) using a high-speed point-to-point switch (Gigaswitch) and the k-ary 3-cube of the Cray T3D. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 758-767 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A general perspective is presented of bimolecular positive ions formed from two rare gases that share a positive charge. These species, which are important in ionospheric processes, arise when neutral van der Waals species are ionized. A general theoretical program based on standard theoretical techniques (e.g., various configuration interaction and Møller-Plesset techniques and quadratic configuration interaction) is outlined, and results for the geometry, stability, and vibrational frequencies for a set of rare gas dimers, AB+, are presented. Specifically, the molecules HeHe+, HeNe+, HeAr+, NeNe+, NeAr+, and ArAr+ are considered; the equilibrium geometry of the ground electronic state is determined at several levels of approximation. Then binding energies are calculated in several ways, and these binding energies are compared to experimental and other sophisticated theoretical results. In general, the agreement with experiment is good, within a few kcal/mol. Harmonic vibrational frequencies at the MP2 level are also computed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 843-855 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Detailed investigation of the binding energetics of Zn2+ to biologically relevant model ligands has been performed by large basis set restricted Hartree-Fock computations. This list includes neutral and anionic ligands that model the sidechains of the amino acid residues of proteins as well as those involved in binding to the metal during enzymatic activation: water, formaldehyde, formamide, imadazole, methylthiol, and the formate, hydroxyl, methoxy, methylthiolate anions. The decomposition of the intermolecular interaction energy into its components (Coulomb, exchange, polarization, and charge transfer) has been done within the frozen fragment reduced variational space procedure (RVS) developed by Stevens and Fink [W. J. Stevens and W. H. Fink, Chem. Phys. Lett., 139, 15 (1987)]. The use of the RVS procedure was dictated by the very large magnitudes of the second-order interaction energy terms in the divalent cation complexes and the need to obtain polarization and charge-transfer contributions in a variational sense. The behavior of the interaction energy with radial and angular variation of the approach of the metal to the ligand is explored. In addition, the nonadditive behavior of polyligated complexes is studied for water and formate. This will also provide the data for a subsequent fit to a molecular mechanics procedure that considers the second-order interactions. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1326-1338 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present an analysis of the behavior of different updating Hessian formulas when they are used for the location and optimization of transition structures. The analysis is based on the number of iterations, the minimum of the weighted Euclidean matrix norm, and first-order perturbation theory applied to each type of Hessian correction. Finally, we give a derivation of a family of updated Hessians from the variational method proposed by Greenstadt. We conclude that the proposed family of updated Hessians is useful for the optimization of transition structures. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1351-1356 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Current macromolecular energy minimization algorithms become inefficient and prone to failure when bond length constraints are imposed. They are required to relieve steric stresses in biomolecules prior to a molecular dynamics simulation. Unfortunately, the latter often require constraints, leading to difficulties in initiating trajectories from unconstrained energy minima. This difficulty was overcome by requiring that the components of the energy gradient vanish along the constrained bonds. The modified energy minimization algorithm converges to a lower energy in a fewer number of iterations and is more robust than current implementations. The method has been successfully applied to the Dickerson DNA dodecamer, CGCGAATTCGCG. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1378-1393 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Molecular dynamics simulations have been used to investigate the ternary complex formed between chicken liver dihydrofolate reductase, a phenyl triazine inhibitor, and reduced nicotinamide adenine dinucleotide phosphate (NADPH). The solvent was represented by a sphere of water molecules encompassing the system. We report the results of quantum mechanical calculations of the rotational barrier in the pyrophosphate link and the barrier to inversion of the triazine ring. AMBER parameters for NADPH and the triazine are provided. Over the course of a 300-ps molecular dynamics simulation of the ternary complex in water, the triazine inhibitor maintains the same hydrogen bonding and hydrophobic interactions with the enzyme that are observed in the X-ray crystal structure. Despite the low calculated barrier to inversion of the triazine ring, a single puckered conformation is observed throughout the simulation. It is proposed that this is primarily due to interactions with Phe34, which maintains an approximately parallel orientation to the triazine ring. The nicotinamide portion of NADPH maintains the interactions observed in the crystal structure, but more conformational change is observed at the adenine end together with associated changes in the protein. Two conformations for the sidechain of Tyr31 are present in the X-ray structure. The main simulation reported here corresponds to the conformation characterized by (χ1 = - 161°, χ2 = - 103°). A separate simulation was also performed in which the sidechain of Tyr31 was initially set to the other conformation present in the crystal structure (χ1 = 139°, χ2 = -99°). During this simulation, χ1 of this sidechain gradually changed until it occupied the region characterized by χ1 = -160°, thereby suggesting that this is the preferred conformation for this residue. The simulation required 200 ps to reach structural equilibrium (as measured by the root mean square, rms, deviation from the initial crystal structure), thus reinforcing the view that simulations of at least several hundreds of picoseconds are desirable when studying such systems. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1428-1433 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Molecular dynamics simulations of extended simple point charge (SPC/E) water have been performed to study the effects of the truncation of long-range interactions on some calculated bulk properties of the liquid. The mean potential calculated in liquid water is sensitive to the choice of the cutoff center in the water molecule. The pair distribution function is also dependent on this choice, although not as strongly as the mean potential. An analysis is carried out to understand the origin of these effects. A common cutoff center is at the oxygen atom in the water molecule, but our study shows that this choice does not yield a mean potential value consistent with a more accurate estimate when no cutoff is applied. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1447-1447 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1459-1467 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article presents a new method for topological analysis of molecular surfaces. Explicit representation of the van der Waals interaction according to the Lennard-Jones potential enabled determination of the function of the maximum radius of a hypothetical atomic probe in any location, r, inside the host's domain. The size of the spatial gradient of the maximal probe's volume (named the ξ value) at that location was found to be a good descriptor of the local shape of the host. Consequently, mapping of the host domain according to the ξ value could be used as a quantitative tool for localization of potent local binding sites. The proposed method is illustrated by mapping an organic host (calix[4]arene) as well as an enzyme (HIV-aspartic protease). Analysis of the calix[4]arene derivative revealed that the proposed method reproduces immediately the known binding site of conic calix[4]arenes. The second test case demonstrated how the catalytic site of the enzyme could be disassembled into many local binding sites. Some of these sites, located according to the proposed method, were found to follow the shape of a known inhibitor of the enzyme in a complementary manner. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Three- and four-center Slater orbital bielectronic integrals are evaluated by means of a complete function set. The method provides a series to approximate the bielectronic integrals. Their corresponding partial sums are analyzed in detail for 1s orbitals. The comparison with the Fourier transform-based method brings forth encouraging perspectives for the present approach. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1522-1542 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Methods have been developed for the determination of vibrational frequencies and normal modes of large systems in the full conformational space (including all degrees of freedom) and in a reduced conformational space (reducing the number of degrees of freedom). The computational method, which includes Hessian generation and storage, full and iterative diagonalization techniques, and the refinement of the results, is presented. A method is given for the quasiharmonic analysis and the reduced basis quasiharmonic analysis. The underlying principle is that from the atomic fluctuations, an effective harmonic force field can be determined relative to the dynamic average structure. Normal mode analysis tools can be used to characterize quasiharmonic modes of vibration. These correspond to conventional normal modes except that anharmonic effects are included. Numerous techniques for the analyses of vibrational frequencies and normal modes are described. Criteria for the analysis of the similarity of low-frequency normal modes is presented. The approach to determining the natural frequencies and normal modes of vibration described here is general and applicable to any large system. © 1995 John Wiley & Sons, Inc.This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 705-714 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Two exquisite models of the acyl-chymotrypsin intermediate, one designed by Bruice and another by Bender, were studied to elucidate the role of the carboxylate ion in the catalytic triad of serine proteases. However, opposing conclusions were drawn from these studies. Computational chemistry analysis of these models indicates that the carboxylate ion plays an insignificant role in the former model because of the correct orientation and the distance of the imidazole group without the carboxylate ion. However, in the latter model, the carboxylate ion serves to orient and place the imidazole group at the correct position. This analysis suggests that an important role of the carboxylate ion in serine proteases is to position the imidazole group to be an effective general base catalyst. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 729-742 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A Genetic Algorithm for Geometry Optimizations (GALGO) program has been developed to study the efficiency of this method of finding global minimum structures. Using a semiempirical tight-binding potential, the behavior of different genetic algorithm (GA) operators has been tested for the linear chain isomer of a C8 cluster. An optimum set of parameters for the GA operators is proposed for this problem and afterward is used to obtain the global minimum structure of rare-gas atomic clusters of up to 13 atoms using the 12-6 Lennard-Jones interatomic pair potential. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 743-757 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We address the problem of marking points on a grid lattice of arbitrary size and spacing as either accessible or inaccessible to a solvent-sized spherical probe. It is shown that an analytical description of the solvent-accessible volume suitable for rapidly testing a large number of lattice points can be constructed from relatively simple geometric elements. By first constructing these basic analytical elements and storing them in suitable data structures, any number of subsequent lattice markings can be carried out. This approach leads to increased computational efficiency whenever a multiple calculation using different lattice sizes and scales is necessary on the same molecular geometry. We also present an algorithm for determining the analytical volume elements. Some aspects of this algorithm, particularly the method for finding all sterically allowed probe positions in which the probe simultaneously contacts three atoms, may also be useful for improving the speed and reliability of analytical surface area calculations. An object-oriented implementation of these algorithms written in C + + is freely available via Internet. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 777-789 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We compare the electrostatic potential surrounding several natural and synthetic nucleic acid bases calculated using an atom-centered multiple expansion (ACME) derived from integration of the charge distribution with that from potential-derived charges (PDCs) obtained using the CHELPG procedure. When the multipole expansions are carried out to octapoles, the root mean square (rms) error in the potential is always less than that from PDCs. Electrostatic interactions in pairs of these nucleic acid bases were also evaluated using ACMEs up to octapoles and PDCs. The electrostatic interaction energies from ACMEs were found always to be larger than those from PDCs or the total self-consistent field (SCF) interaction energy. The value of the electrostatic energy differs by as much as approximately 19 or as little as approximately 8 kJ/mol between the ACME and PDC methods. The rank ordering provided by the electrostatic models is grossly similar but differs in the ranking of systems with two and three hydrogen bonds. A rigid twist about the N—H ⃛ N axis of the pairs was examined using SCF calculations and the electrostatic models. It was found that with ACMEs the energy required for a 90-degree rotation was always higher than that found from SCF calculations. With PDCs, similar results are obtained, except with the adenine/thymine and 9-methyl-adenine/1-methyl-thymine pairs. In these instances, the barrier is about 4 kJ/mol lower than that found with SCF calculations. These results demonstrate that integration of the charge density can provide convergent multipole expansions that provide a more accurate description of the electrostatic potential than the commonly used PDC model. In addition, the description of electrostatic interactions during twisting of AT and mAmT given by this model is shown to be somewhat anomalous. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The parameters for an empirical point charge calculation method, Mulliken Population Constrained Potential Derived-Modified Partial Equalization of Orbital Electronegativity (MPCPD-MPEOE) method, for hypervalent sulfur, phosphorus, and the atoms bonded to these atoms, were determined. A new empirical method, MPCPD, which has inherent advantages over both the Mulliken population and potential derived methods, is proposed here. The MPCPD net atomic charges are transferable and reproduce the electrostatic potential. The electrical properties were calculated with the MPCPD and MPCPD-MPEOE charges. These properties agreed well with experimental results and with 6-31G** ab initio results. The MPEOE parameters for the sulfur atom in aromatic molecules and trivalent phosphorus in phosphite molecules were also determined. The dipole moments calculated with the MPCPD-MPEOE point charges agreed well with experimental results. All the parameters obtained in this work are consistent with those obtained in our previous work. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1468-1473 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new technique incorporating the protein-dipole Langevin-dipole (PDLD) model into the Tanford-Kirkwood (TK) formula has been proposed which provides a rather detailed description of solvent and ionic strength effects on the electrostatic energies. Applications of this method to realistic problems have been performed and concern the solvation energies of four residues of bovine pancreatic trypsin inhibitor (BPTI) and the pK shift of His-64 of mutant subtilisin BPN′. We focus our calculation on the back-field effects of bulk solvent.The determination of protein-induced dipoles is cumbersome due to the solvent screening effects. The protein-induced dipoles are dependent on their local electric fields, which come from the protein net charges, the surrounding water molecules, and bulk solvent. The bulk solvent will usually screen the electric fields from the protein net charges and dipoles, which are defined here as the back-field effects of bulk solvent on protein net charges and dipoles, respectively. Our calculations indicate that the back-field effects of bulk solvent on protein dipoles can simply be ignored, introducing a relative error less than 3%; whereas such back field-effects on protein net charges are relatively important and cannot simply be ignored, especially when considering a system of highly charged species. © 1995 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1513-1521 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The relative free energy difference (ΔΔGhyd) for the reversible addition of water to two unsaturated molecules is accurately computed using a combination of ab initio quantum mechanical calculations and free energy perturbation methods. Initial attempts to calculate the absolute hydration free energy difference (ΔGhyd) for formaldehyde and trichloroacetaldehyde gave values that differed substantially from experimental results even after inclusion of electron correlation energy contributions using third-order (MP3) and fourth-order (MP4) Møller-Plesset perturbation theory and QCISD(T) correlation methods at the 6-31G** basis set level. Inaccuracies in ΔGhyd were attributed to errors in the calculation of both ΔGgas and ΔΔGsol. Gas phase quantum mechanical free energies (ΔGgas) varied significantly (2-3 kcal/mol) depending on the level of theory. Errors in ΔΔGsol were attributed to slow convergence of the calculations using the thermodynamic cycle perturbation (TCP) method with explicit solvent. These errors were minimized or canceled, however, when relative hydration free energy differences (ΔΔGhyd) were calculated using a combination of ab initio quantum mechanical calculations and free energy perturbation methods. Calculated values for a variety of aldehydes and ketones were consistent with experimental data. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1543-1553 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A series of normal mode analyses of bovine pancreatic trypsin inhibitor (BPTI) has been performed. The results of modifying the long-range truncation of electrostatics, reducing the conformational space of the system (reduced basis normal mode analysis), and using different parameter sets and models for the potential function are reported. Both explicit (904 atoms) and polar hydrogen (580 atoms) representations of BPTI were examined and produced nearly identical normal mode vectors but slightly modified vibrational frequencies. The truncation methods - no cutoff, shift, and switch - were examined, and the use of a short switching function was found to alter harmonic motion greatly. A table relating the different cutoff methods to several previously published frequencies for BPTI indicates that the diversity of published lowest frequencies is due to the use of different electrostatic models rather than to inherent differences in the models or energy parameters. Examining reduced basis results demonstrates that a dihedral basis yields similar normal mode vectors, though the vibrational frequencies are shifted to higher values. The analysis of BPTI harmonic dynamics using a spherical harmonic reduced basis set yields significantly altered dynamics, indicating that BPTI is not well represented as a homogeneous object at low temperatures. © 1995 John Wiley & Sons, Inc.This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1554-1566 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Atomic motions in bovine pancreatic trypsin inhibitor (BPTI), derived from molecular dynamics, harmonic analysis, and quasiharmonic analysis, are compared when a single protein model, energy parameters, and environment are employed. Molecular dynamics (MD) was carried out for 2 nanoseconds. An average structure was determined from the last nanosecond of the MD simulation, when no major structural changes were observed. This structure was used for several harmonic analysis calculations as well as for a reference structure for the quasiharmonic analysis, for both full basis and reduced basis sets. In contrast to the harmonic analysis results, the quasiharmonic reduced basis calculation using a spherical harmonics reduced basis provided good agreement with the full basis calculation, suggesting that when anharmonic effects are considered, BPTI can behave as a homogeneous object. An extensive analysis of the normal modes from a diverse set of 201 minimized MD simulation frames was performed. On only the sub-picosecond time scale were energy minima revisited after a transition to another state. This analysis shows that the dynamics average structure is not representative of the simulation frames in terms of energy and vibrational frequencies. For this model of BPTI, 42% of the motion (mean-squared fluctuation) can be attributed to harmonic limit behavior. A spectral analysis of the correlation function of deformation for a particular normal mode or quasiharmonic mode can be used to determine the time scales of motions which correspond to harmonic vibration, large-scale drift, or sharp transitions between local substrates. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 690-704 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A potential energy function is developed to represent the interaction of small monovalent cations, Li+, Na+, and K+, with the backbone of polypeptides. The results are based on ab initio calculations up to the 6-31G* level of the interactions of the ions with acetamide and N-methylacetamide. Basis set superposition errors are corrected with the counterpoise method. A systematic overestimate of the bond polarities is taken into account by an empirical scaling procedure that uses the ratio of the experimental to ab initio dipole moment. The calculated binding energies obtained with this procedure show consistent convergence with different basis sets and are in good agreement with experimental data on cation-water and cation-dimethylformamide systems. Investigations of the calculated ab initio potential energy surface indicate that the cation-peptide interaction is dominated by electrostatics and includes a nonnegligible contribution from polarization of the peptide group by the ion. The induced polarization results in a steeper-than-Coulombic interaction and cannot be described by fixed ion-peptide partial charges electrostatics. Atomic polarizabilities located on the atoms of the ligand molecule are introduced to account for the induced polarization in the empirical energy function. A ∼1/r4 attractive interaction appears in the potential function. The resulting radial and angular dependence of the potential energy surface is well reproduced. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 171-187 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article introduces several methods of assessing the extent to which a collection of conformations represents or covers conformational space. It also describes poling: a novel technique for promoting conformational variation that can be applied to any method of conformational analysis that locally minimizes a penalty or energy function. The function being minimized is modified to force similar conformers away from each other. The method is independent of the origin of the initial conformers and of the particular minimization method used. It is found that, with the modification of the penalty function, clustering of the resulting conformers is generally unnecessary because the conformers are forced to be dissimilar. The functional form of the poling function is presented, and the merits are discussed with reference to (1) efficacy at promoting variation and (2) perturbation of the unmodified function. Results will be presented using conformers obtained from distance geometry with and without poling. It will be shown that the addition of poling eliminates much redundancy in conformer generation and improves the coverage of the conformational space. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The force field previously obtained for both anomers of glucose has been applied to six disaccharides that are molecules of D-glucopyranosyl residues. These six disaccharides have different types of glycosidic linkages - that is, α, α trehalose dihydrate (1-1), sophorose monohydrate (β, 1-2), laminarabiose (β, 1-3), maltose monohydrate (α, 1-4) and cellobiose (β, 1-4), and gentiobiose (β, 1-6). From a careful analysis of the infrared and Raman spectra and from harmonic dynamics calculations in the crystalline state, the results show the reliability and the transferability of the set of parameters previously obtained for different carbohydrates. Below 1500 cm-1, observed data and the corresponding calculated frequencies agreed within 5 cm-1 for each of the six disaccharides. The vibrational density of states are well reproduced by these calculations for each molecule, particularly for the fingerprint regions. Moreover, as found by other workers who used sophisticated potential energy functions, no additional terms are needed to express the exoanomeric effect. Specific force constants characteristic of each glycosidic linkage have been derived, particularly for the glycosidic angle bending. More interesting are the values of the internal rotation barriers. It is shown that they are of the same size for both sides of the glycosidic linkage: VC1O1 = VO1Cx′ = 3.29 kcal/mol for an alpha residue and 2.64 kcal/mol for a beta unit (x = 1-6 depends on the position of the glycosidic linkages of the considered disaccharide). © 1995 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 422-440 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present improved algorithms for the SMx (x = 1, 1a, 2, 3) solvation models presented previously [see the overview in C. J. Cramer and D. G. Truhlar, J. Comp.-Aided Mol. Design, 6, 629 (1992)]. These models estimate the free energy of solvation by augmenting a semiempirical Hartree-Fock calculation on the solute with the generalized Born (GB) model for electric polarization of the solvent and a surface tension term based on solvent-accessible surface area. This article presents three improvements in the algorithms used to carry out such calculations, namely (1) an analytical accessible surface area algorithm, (2) a more efficient radial integration scheme for the dielectric screening computation in the GB model, and (3) a damping algorithm for updating the GB contribution to the Fock update during the iterations to achieve a self-consistent field. Improvements (1) and (2) decrease the computer time, and improvement (3) leads to more stable convergence. Improvement (2) removes a small systematic numerical error that was explicitly absorbed into the parameterization in the SMx models. Therefore, we have adjusted the parameters for one of the previous models to yield essentially identical performance as was obtained originally while simultaneously taking advantage of improvement (2). The resulting model is called SM2.1. The fact that we obtain similar results after removing the systematic quadrature bias attests to the robustness of the original parameterization. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 445-448 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An approach using the finite difference solution of the Poisson-Boltzmann equation to estimate binding free energy changes for two receptor-ligand systems, arabinose binding protein and sulfate binding protein, is presented. The eight calculated binding free energy changes agree with experiment, showing a correlation coefficient of 0.92 and energy deviations of 1 kcal/mol or less. More importantly, the decomposition of solvation and assembly energies in this approach provides an understanding of binding mechanisms and therefore could suggest directions to alter binding affinities. The method is demonstrated to be useful in analyzing experimental binding structures and predicting binding effects of mutants or modified ligands for macromolecular systems, in which the electrostatic forces dominate the overall interaction and the structural perturbations upon modifications are small. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 512-516 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An improved version of the “marching-cube” method1 is proposed for molecular surface triangulation. This new algorithm involves fewer and simpler basic building blocks and avoids the artificial gaps of the original one. Moreover, to make it applicable to the boundary element method, the procedures for the protein cavity identification and triangle reduction are also presented. The triangulation procedure was tested by incorporating it into the boundary element method (BEM) to estimate the pKa values of subtilisin BPN′ and bovine trypsin inhibitor (BPTI). © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 527-533 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Simple expressions for the forces due to dihedral-angle interactions are derived using first principles of mechanics. The expressions require significantly fewer numerical operations than those generally used in the literature and provide insight into the physics of dihedral-angle interactions. It is also shown that the scalar virial due to angle-dependent interactions is zero. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1038-1044 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A novel method to calculate the derivatives of solvent accessible surface areas is presented. Unlike earlier analytic methods, which require the molecular topology and the use of global Gauss-Bonnet theorem, this method requires only the fractional accessibilities of surface arcs. We developed an efficient numerical algorithm to calculate the surface arcs by creating a uniform set of points on the circles of intersection between surface atoms. A hierarchical point density doubling scheme led to a logarithmic dependence of Central Processing Unit (CPU) time on the number of points used. This algorithm calculated area derivatives for a 1000-atom protein in 1.5 s on an SGI INDIGO2 which were within 2% of the analytic area derivatives calculated with the program ANAREA. This algorithm scales linearly with the number of atoms for large molecules and is easily parallelizable. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1055-1066 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio calculations using both pseudopotential and double and triple-ζ all-electron basis sets, with and without electron correlation (MP2, QCISD), have been performed on the λ4-sulfanyl (SH3), λ4-selanyl (SeH3), and λ4-tellanyl (TeH3) radicals. All-electron basis sets of double-ζ quality predict that SH3 and SeH3 correspond to transition states on their respective potential energy surfaces. In contrast, the pseudopotentials of Hay and Wadt predict that SH3 and SeH3 correspond to local minima at the QCISD level of theory while the pseudopotentials of Christiansen and Stevens predict transition states. By comparison, TeH3 proved to be a local minimum at all levels of theory. Interestingly, when a very large (triple-ζ) all-electron basis set was used, SH3 proved to be a transition state; however, in this instance the potential energy surface was found to be much flatter than in the case for which a double-ζ basis set was used, suggesting that further improvements in the basis set may lead to a local minimum. Further improvements in the all-electron selenium basis also led to a local minimum for SeH3 at the QCISD level of theory. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The realization that conformational flexibility must be incorporated into the description of the structural and dynamical behavior of carbohydrates has stimulated the quest for an appropriate force field and associated parameterization capable of dealing with the many specific features of these molecules. Accordingly, we set out to evaluate the capacity of very different force fields to reproduce a series of experimental spectral data such as optical rotatory dispersion, coupling constants, and nuclear Overhauser effects. NOESY volumes and long-range homonuclear and heteronuclear vicinal coupling constants were measured at 400.13 MHz. Optical rotation measurements were also performed on ethyl β-lactoside. The conformational behavior of ethyl β-lactoside was investigated in three different molecular mechanics force fields leading to three complete ensembles of theoretical conformations, which were used for evaluating these statistically averaged observables. The calculations of optical rotation followed a recent model based on interacting oscillators. Coupling constants were calculated using the appropriate sets of Karplus-type equations, and theoretical nuclear magnetic resonance (NMR) relaxation data were obtained for models which account for either slow or fast internal motions. The calculated potential energy surfaces were shown to be dependent on the type of force field, even in the case of such a simple disaccharide. They differ in several respects, including the number and location of low-energy conformers and the shallowness of the dominant primary region. It was possible to assess the different time-averaged orientations about the glycosidic linkage of the three force fields from the fit obtained for the interglycosidic heteronuclear coupling constants. Poor fits between theoretical and experimental NOESY volumes were observed for all three force fields when the slow internal motion model was used, while a greatly improved fit was obtained when the fast internal motions model was applied. It has been shown that the motional model established from NOESY data is analogous to the one obtained from molecular dynamics simulations. The quality of the fit for the NOESY data varies with the force fields and corroborates the classification obtained from heteronuclear coupling. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1181-1191 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We have developed a novel simulation strategy based on cellular automata methods which can be used to simulate a variety of physicochemical processes, including those involved in polymerization. Our approach leads to dynamic, parallel models. This strategy can address several classes of questions in technologically or scientifically important systems for which only limited structural or dynamical information is available by current experimental techniques. We illustrate the use of our methods by creating a model of lignification in vivo. The monomers are represented by pseudo-diatomic molecules as a refinement to the usual point-particle geometry normally used in such models. Our lignification model captures the essence of the underlying physical processes, as evidenced by the fact that it reproduces satisfactorily many experimentally determined properties of lignin. Due to the inherent efficiency of parallel cellular automata, our simulation strategy shows great promise, particularly for modeling species of very high molecular weight (over 106 daltons). © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1227-1237 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Restricted Hartree-Fock (RHF), second-order Møller-Plesset (MP2), and density functional calculations [using the Becke/Lee-Yang-Parr (B-LYP) exchange/correlation gradient-corrected functionals] employing the 6-311G(d, p) and 6-311 + + G(d, p) basis sets have been carried out to calculate isodesmic bond separation energies for reactions involving a number of representative five- and six-membered ring organic compounds. The MP2 and density functional approaches yield reasonably good energies; the density functional method agrees particularly well with experiment, exhibiting a root-mean-square error of only 2.5 kcal/mol. Ring geometries are calculated satisfactorily in all approaches but are given particularly accurately by the MP2 approach. A comparison of the B-LYP bond separation energies with several other definitions of resonance energy shows that these different approaches correlate with each other in a reasonable fashion. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The double cubic lattice method (DCLM) is an accurate and rapid approach for computing numerically molecular surface areas (such as the solvent accessible or van der Waals surface) and the volume and compactness of molecular assemblies and for generating dot surfaces. The algorithm has no special memory requirements and can be easily implemented. The computation speed is extremely high, making interactive calculation of surfaces, volumes, and dot surfaces for systems of 1000 and more atoms possible on single-processor workstations. The algorithm can be easily parallelized. The DCLM is an algorithmic variant of the approach proposed by Shrake and Rupley (J. Mol. Biol., 79, 351-371, 1973). However, the application of two cubic lattices - one for grouping neighboring atomic centers and the other for grouping neighboring surface dots of an atom - results in a drastic reduction of central processing unit (CPU) time consumption by avoiding redundant distance checks. This is most noticeable for compact conformations. For instance, the calculation of the solvent accessible surface area of the crystal conformation of bovine pancreatic trypsin inhibitor (entry 4PTI of the Brookhaven Protein Data Bank, 362-point sphere for all 454 nonhydrogen atoms) takes less than 1 second (on a single R3000 processor of an SGI 4D/480, about 5 MFLOP). The DCLM does not depend on the spherical point distribution applied. The quality of unit sphere tesselations is discussed. We propose new ways of subdivision based on the icosahedron and dodecahedron, which achieve constantly low ratios of longest to shortest arcs over the whole frequency range. The DCLM is the method of choice, especially for large molecular complexes and high point densities. Its speed has been compared to the fastest techniques known to the authors, and it was found to be superior, especially when also taking into account the small memory requirement and the flexibility of the algorithm. The program text may be obtained on request. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 285-295 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The concept of moment statistics for evaluating conformations of molecules derived from molecular dynamics simulations is presented. A comparison of the rigidity of tetralin with benzene and cyclohexane, the effect of “tooth thickness” in geared systems, the fluctional motion of a linear alkane, and the differences between dynamical motions of hydrogen-bonded systems in gas versus solution phases were studied. The strengths and weaknesses of implementing moment statistics as a tool for data reduction are described. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 856-882 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Detailed investigations are performed of the binding energetics of Zn2+ to a series of neutral and anionic ligands making up the sidechains of amino acid residues of proteins, as well as ligands which can be involved in Zn2+ binding during enzymatic activation: imidazole, formamide, methanethiol, methanethiolate, methoxy, and hydroxy. The computations are performed using the SIBFA molecular mechanics procedure (SMM), which expresses the interaction energy under the form of four separate contributions related to the corresponding ab initio supermolecular ones: electrostatic, short-range repulsion, polarization, and charge transfer. Recent refinements to this procedure are first exposed. To test the reliability of this procedure in large-scale simulations of inhibitor binding to metalloenzyme cavities, we undertake systematic comparisons of the SMM results with those of recent large basis set ab initio self-consistent field (SCF) supermolecule computations, in which a decomposition of the total ΔE into its four corresponding components is done (N. Gresh, W. Stevens, and M. Krauss, J. Comp. Chem., 16, 843, 1995). For each complex, the evolution of each individual SMM energy component as a function of radial and in- and out-of-plane angular variations of the Zn2+ position reproduces with good accuracy the behavior of the corresponding SCF term. Computations performed subsequently on di- and oligoligated complexes of Zn2+ show that the SIBFA molecular mechanics (SMM) functionals, Epol and Ect, closely account for the nonadditive behaviors of the corresponding second-order energy contributions determined from the ab initio SCF calculations on these complexes and their nonlinear dependence on the number of ligands. Thus, the total intermolecular interaction energies computed with this procedure reproduce, with good accuracy, the corresponding SCF ones without the need for additional, extraneous terms in the intermolecular potential of polyligated complexes of divalent cations. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 370-377 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present an efficient technique for Monte Carlo simulation of electrostatic free energy changes in biomolecular systems. It is a development of a recent method for the study of the influence of electrostatic interactions on the ion binding properties and redox potentials of biomolecules. The electrolyte solution is described by the primitive model, in which ions are treated as hard charged spheres and the solvent is replaced by a structureless continuum. The protein is kept fixed in the center of a spherical simulation cell, and the dielectric constant has the solvent value throughout the cell. By a multiparticle perturbation approach, it is possible to obtain a number of free energy changes within one simulation only. The usefulness of the method is illustrated with a study of the copper binding electron-transport protein azurin (from Alcaligenes denitrificans). The change in acidity of the histidine residues upon changing the redox state of the copper ion is calculated. The theoretical predictions agree well with available experiments. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 378-384 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A reaction field theory, combined with the MNDO, AM1, and PM3 molecular orbital methods, was applied to hydration phenomena of metal cationic species. The first hydration shell was treated explicitly by using a supermolecular model, [M(H2O)n]m+, and its surrounding medium was described with a continuum dielectric. Hydration free energies were evaluated as a sum of the contributions from the electrostatic interaction with the bulk medium, the hydrated cluster formation, the cavity formation, and the vaporization of water molecules forming the cluster. As a whole, calculated hydration energies were in good agreement with the corresponding experimental data over various kinds of metal cationic species. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 414-421 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A fuzzy c-means clustering algorithm is presented which is much faster than the traditional algorithm for data sets in which the number of features is significantly larger than the number of feature vectors. The algorithm is constructed by utilizing the covariance structure of feature vectors and cluster centers. By using results from a previous clustering, modified versions of the new algorithm achieve additional reductions in floating point operations. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 973-983 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: MM3(94) has been used to predict the conformers of nitrogen-containing aromatic heterocycles with polar aliphatic sidechains. Computations were done for cases in which experimental gas-phase rotational constants have been determined and include histamine and analogs of tryptophan. The agreement with experiment for the tryptophan analogs is better than earlier MM2(87) computations but still not complete. A fairly good match can be made to experimental rotational constants of four histamine conformers, but other conformers are also predicted that may not be important experimentally. A comparison can be made with ab initio calculations undertaken for histamine. Similar structures were generally predicted, but there were significant discrepancies with MM3 in relative conformer energies. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1027-1037 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Electrostatic models frequently proposed to describe ion-molecule interactions have been tested on the adducts formed by Group 1 and 2 cations with H2O, NH3, H2S, PH3, their methyl analogs, and their anions. The results from the model calculations were compared with all-electron calculations (geometry optimized, MP2, TZP basis sets) carried out on adducts formed with Li+, Na+, K+, Ca2+, and Mg2+. The electrostatic potential model was utilized in two ways: The attraction of the point charge was calculated with and without relaxation of the ligand. A third model allowed relaxation of the ligand but treated the cation as a frozen core. The final model was the crude point charge/point dipole approximation. At long range, the models satisfactorily track the effects on energy of gross changes in the ion-ligand interaction (monovalent versus divalent ions, neutral ligands versus anions, parent ligands versus methyl derivatives), but correlation at close range is poor, especially for binding by divalent cations. The hypothesis that the calculated strength of cation-dipole binding is dependent on calculated dipole moment could not be verified. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 465-477 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The structures and relative stabilities of a series of disulfide (XSSX) and thiosulfoxide (X2SS) isomers have been studied for X = F, Cl, CH3, and H, using various levels of conventional ab initio and density functional theory (DFT). The XSSX isomers are more stable than the X2SS isomers for all substituents. The energy gap ΔE(X) between the two isomers increases (i.e., XSSX becomes more stable with respect to X2SS), and the S—S bond contracts in the series for X = F, Cl, CH3, H. The results are interpreted by means of natural population analysis (NPA) (e.g., the interaction between the disulfide moiety S2· and the two substituents X·). The bonding in the hypervalent X2SS species is similar to the bonding in the nonhypervalent XSSX and does not involve a special role for sulfur-3d orbitals. These orbitals acquire only minimal populations and are not to be conceived as valence orbitals. The DFT and conventional ab initio results, Xα/DZP and MP2/6-31G** optimized structures and isomerization energies (at the highest levels of both methods), agree well. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 454-464 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present a computational method for prediction of the conformation of a ligand when bound to a macromolecular receptor. The method is intended for use in systems in which the approximate location of the binding site is known and no large-scale rearrangements of the receptor are expected upon formation of the complex. The ligand is initially placed in the vicinity of the binding site and the atomic motions of the ligand and binding site are explicitly simulated, with solvent represented by an implicit solvation model and using a grid representation for the bulk of the receptor protein. These two approximations make the method computationally efficient and yet maintain accuracy close to that of an all-atom calculation. For the benzamidine/trypsin system, we ran 100 independent simulations, in many of which the ligand settled into the low-energy conformation observed in the crystal structure of the complex. The energy of these conformations was lower than and well-separated from that of others sampled. Extensions of this method are also discussed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 501-511 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The thermodynamic, dielectric, and dynamic properties of a newly parameterized flexible water model are studied using molecular dynamics simulations. The potential function developed is based on the popular simple point charge (SPC) rigid model with the addition of appropriate harmonic and anharmonic energy terms for stretching and bending. Care was taken to account for the self-polarization and gas-phase monomer energy corrections during the parameterization, which have typically been ignored in past studies. The results indicate that an increased Lennard-Jones repulsive coefficient and slightly scaled partial charges are required when adding flexibility to the rigid model potential to reliably reproduce the experimental density, energy, and O ⃛ O radial distribution function of water at 298 K and 1 atm. Analysis of the power spectrum derived from the H-velocity autocorrelation function allowed the water potential to be evaluated further and refined by adjusting the valence forces to fit the vibrational frequencies of the gas and liquid. Once a consistent set of parameters was determined, the static dielectric properties of the water model were calculated at two temperatures using the reaction field method to treat long-range forces and correlations. The dielectric constant of 75 ± 7 calculated at 300 K is in good agreement with the experimental value of 78.5. The Kirkwood g factor was also examined for temperature dependence and showed the correct increasing behavior with decreasing T. As a final check of the water potential, the free energies of solvation of a flexible water molecule and neon were predicted using thermodynamic perturbation methods. The calculated solvation energies of -7.0 ± 0.8 for water and 2.7 ± 0.7 for neon are both consistent with the experimental values of -6.3 and 2.7 kcal/mol. Comparisons are made throughout the study with the results of previous rigid and flexible model simulations. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 534-544 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The exponents method for calculating the concentrations of species in multimetal-multiligand systems is introduced. This method uses the Newton-Raphson method with restricted step iteration, which guarantees a monotonically decreasing objective function. Variable transformation and scaling are performed to avoid underflows and overflows during the calculations. A special linear solver using the eigenvalues and eigenvectors of the Jacobian matrix is implemented for overcoming disastrous singularity of this matrix, and the singular value decomposition method is applied for setting the initial guess. In addition, polynomial extrapolation is used for improving the performance when simulating a diagram of concentrations of species. The method was tested with 14 systems of different sizes over the whole pH range and presented robust and efficient behavior. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 563-575 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The self-consistent reaction field (SCRF) method proposed by Miertus, Scrocco, and Tomasi (MST) has been optimized for MNDO and PM3 semiempirical Hamiltonians. Different algorithms used to compute the molecular electrostatic potential (MEP) and different solute cavities have been investigated. The ability of the optimized models to reproduce experimental free energies of solvation and to mimic the solvent effect in several chemical processes has been compared with the ab initio and AM1 versions of the MST method as well as with experimental data. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 610-619 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The EFF'93 force field is used to study crystalline alkanes. In addition to detailed molecular geometries, the sublimation enthalpy, heat capacity, and lattice vibrations for a number of saturated hydrocarbons are reported and compared with experiment. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...