Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Digitale Medien  (82)
  • 1995-1999  (40)
  • 1990-1994  (39)
  • 1955-1959  (3)
  • 11
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: After many years of fusion research, the conditions needed for a D–T fusion reactor have been approached on the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. For the first time the unique phenomena present in a D–T plasma are now being studied in a laboratory plasma.The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≈2.8 MW m−3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni(0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP [Nucl. Fusion 34, 1247 (1994)] simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: In the Tokamak Fusion Test Reactor (TFTR) [International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Wurzburg, Paper No. A-2-2 (International Atomic Energy Agency, Vienna, 1993)] there have been at least three types of anomalous loss of alpha-like deuterium–deuterium (D–D) fusion products: (1) a magnetohydrodynamic (MHD)-induced loss of D–D fusion products correlated with Mirnov and fishbone-type oscillations and sawtooth crashes, (2) a slow "delayed'' loss of partially thermalized D–D fusion products occurring without large MHD activity, and (3) ion cyclotron resonance heating (ICRH)-induced loss of D–D fusion products ions observed during direct electron heating experiments, and possibly also during 3He minority heating. In this paper each of these will be reviewed, concentrating on those due to MHD activity, which are the largest of these anomalous losses. The experimental results are compared with numerical models of various fusion product transport mechanisms.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: The electron deposition resulting from the injection of Li pellets into Tokamak Fusion Test Reactor, measured by a multichannel (10) infrared interferometer, is compared with that deduced from the pellet ablation cloud emission, measured by a filtered diode array which views the pellet from behind. By assuming that the ablation rate N(overdot)(r) is proportional to the pellet cloud emissivity, which is dominated by Li+ line emission in the 548.5±5 nm bandpass of the interference filter, the post-pellet, line averaged density perturbations along the interferometer chords were calculated and compared with those measured. Good agreement is observed. The experimental ablation rate profiles obtained using the emissivity have also been compared with predictions of the theoretical models. There is an agreement between the time history of the emissivity and the predicted ablation rate at the plasma edge where the electron temperature values are less than 1–1.5 keV. When the pellet penetrates more deeply, the experimental N(overdot)(r) values are systematically smaller than those predicted. This points out the necessity of taking into account plasma shielding and/or precooling of the target plasma during pellet injection in the ablation model.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: In TFTR plasmas, reliable and accurate time-dependent electron density profiles are routinely available via an Abel inversion of interferometry measurements [H. Park, Plasma Phys. Controlled Fusion 31, 2035 (1989)]. This technique does not require constancy of density on a equiflux surface and mild deviations of the flux surfaces from a circular shape are accommodated through analytic approximations. However, when the flux surfaces become extremely noncircular as the plasma β is increased significantly, the inverted profiles are not consistent with the Thomson scattering measurements. In order to obtain accurate time-dependent density profiles in high-β plasmas, detailed flux surface information from magnetic measurements must be used to invert the interferometric measurements. The basic inversion process is similar but the scrape-off layer treatment is different when an X point is introduced on the high field side. In this paper, we present a comparison between the inverted profiles obtained with the flux-surface data and with the analytic method. This work supported by U. S. Department of Energy Contract No. DE-AC02-76-CHO-3073.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 62 (1991), S. 982-985 
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: Small alignment errors of right-angle linkage monochromators typical to many x-ray absorption fine structure beamlines can cause significant errors in the energy calibrations. A 1° misalignment produces errors greater than 1 keV over the hard x-ray operating range of a typical monochromator. The energy error caused by such misalignments is analyzed and its mathematical form given. The error can be corrected by inverting the expression and the amount of misalignment determined by accurate energy measurements at a few points. The accuracy of the corrections is tested. The effects of this error on x-ray absorption fine structure data and their interpretation are also discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The electron temperature (Te) profile in neutral beam-heated supershot plasmas (Te0∼6–7 keV ion temperature Ti0∼15–20 keV, beam power Pb∼16 MW) was remarkably invariant when radiative losses were increased significantly through gas puffing of krypton and xenon in the Tokamak Fusion Test Reactor [McGuire et al., Phys. Plasmas 2, 2176 (1995)]. Trace impurity concentrations (nz/ne∼10−3) generated almost flat and centrally peaked radiation profiles, respectively, and increased the radiative losses to 45%–90% of the input power (from the normal ∼25%). Energy confinement was not degraded at radiated power fractions up to 80%. A 20%–30% increase in Ti, in spite of an increase in ion–electron power loss, implies a factor of ∼3 drop in the local ion thermal diffusivity. These experiments form the basis for a nearly ideal test of transport theory, since the change in the beam heating power profile is modest, while the distribution of power flow between (1) radiation and (2) conduction plus convection changes radically and is locally measurable. The decrease in Te was significantly less than predicted by two transport models and may provide important tests of more complete transport models. At input power levels of 30 MW, the increased radiation eliminated the catastrophic carbon influx (carbon "bloom") and performance (energy confinement and neutron production) was improved significantly relative to that of matched shots without impurity gas puffing. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The effect of isotope on confinement in high-recycling, L-mode plasmas is studied on the Tokamak Fusion Test Reactor (TFTR) [see D. M. Meade, J. Fusion Energy 7, 107 (1988)] by comparing hydrogen and deuterium plasmas with the same magnetic field and similar electron densities and heating power, with both Ohmic and deuterium-neutral-beam heating. Following a long operational period in deuterium, nominally hydrogen plasmas were created through hydrogen glow discharge and hydrogen gas puffing in Ohmic plasmas, which saturated the exposed limiter surface with hydrogen and raised the H/(H+D) ratio from 10±3% to 65±5%. Ohmic deuterium discharges obtained higher stored energy and lower loop voltage than hydrogen discharges with similar limiter conditions. Neutral-beam power scans were conducted in L-mode plasmas at minor radii of 50 and 80 cm, with plasma currents of 0.7 and 1.4 MA. To minimize transport differences from the beam deposition profile and beam heating, deuterium neutral beams were used to heat the plasmas of both isotopes. Total stored energy increased approximately 20% from nominally hydrogen plasmas to deuterium plasmas during auxiliary heating. Of this increase about half can be attributed to purely classical differences in the energy content of unthermalized beam ions. Kinetic measurements indicate a consistent but small increase in central electron temperature and total stored electron energy in deuterium relative to hydrogen plasmas, but no change in total ion stored energy. No significant differences in particle transport, momentum transport, and sawtooth behavior are observed. Overall, only a small improvement (∼10%) in global energy confinement time of the thermal plasma is seen between operation in hydrogen and deuterium. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The first experiments utilizing high-power radio waves in the ion cyclotron range of frequencies to heat deuterium–tritium (D–T) plasmas have been completed on the Tokamak Fusion Test Reactor [Fusion Technol. 21, 13 (1992)]. Results from the initial series of experiments have demonstrated efficient core second harmonic tritium (2ΩT) heating in parameter regimes approaching those anticipated for the International Thermonuclear Experimental Reactor [D. E. Post, Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 13th International Conference, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239]. Observations are consistent with modeling predictions for these plasmas. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves has been observed in D–T, deuterium-deuterium (D–D), and deuterium–helium-4 (D–4He) plasmas with high concentrations of minority helium-3 (3He) (n3He/ne(approximately-greater-than)10%). Mode conversion current drive in D–T plasmas was simulated with experiments conducted in D–3He–4He plasmas. Results show a directed propagation of the mode converted ion Bernstein waves, in correlation with the antenna phasing. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: In the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] a substantial improvement in fusion performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive conditioning of the limiter with lithium. This combination has resulted in not only significantly higher global energy confinement times than have previously been obtained in high current supershots, but also in the highest central ratio of thermonuclear fusion output power to input power observed to date. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Ohmic plasma size scans have been carried out in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)] to measure the influence of the major radius upon energy confinement. The major radius, minor radius, and aspect ratio were varied over wide ranges (R=2.08–3.2 m, a=0.4–0.9 m, and R/a=2.9–8.0) at constant qc. The energy confinement determined from kinetic diagnostics varies strongly with major radius. The data set is less well suited to determine minor radius scaling, but it appears to be distinctly weaker than the major radius scaling. The anomaly in ion thermal conductivity over neoclassical predictions appears to decline with increasing aspect ratio, which is a better ordering parameter for the magnitude of the anomaly than either the minor radius or the major radius. © 1994 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...