Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We demonstrate that depositing Ta diffusion barriers under ultra-high vacuum conditions without in situ oxygen dosing allows for variations both in microstructure and in the concentration of chemical impurities that severely degrade barrier performance. The effects of deposition pressure, in situ oxygen dosing at interfaces, hydrogen and oxygen contamination, and microstructure on diffusion barrier performance to Cu diffusion for electron-beam deposited Ta are presented. 20 nm of Ta diffusion barrier followed by a 150 nm Cu conductor were deposited under ultra-high vacuum (UHV, deposition pressure of 1×10−9 to 5 ×10−8 Torr) and high vacuum (HV, deposition pressure of 1×10−7 to 5×10−6 Torr) conditions onto 〈100〉 Si. In situ resistance furnace measurements, Auger compositional depth profiling, secondary ion mass spectrometry, and forward recoil detection along with scanning and transmission electron microscopy were used to determine the electrical, chemical, and structural changes that occurred in thin-film Ta diffusion barriers upon annealing. Undosed HV deposited Ta barriers failed from 560 to 630 °C, while undosed UHV barriers failed from 310 to 630 °C. For UHV Ta barriers, in situ oxygen dosing during deposition at the Cu/Ta interface increased the failure temperatures by 30–250 °C and decreased the range of failure temperatures to 570–630 °C. Undosed UHV Ta barriers have no systematic relationship between failure temperature and deposition pressure, although correlations between breakdown temperature, oxygen and hydrogen concentrations, and microstructural variations were measured.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 4978-4980 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have used in situ resistance versus temperature measurements to demonstrate that a 60 nm titanium thin film on polycrystalline silicon heated at rates up to 3000 °C/min always forms high-resistivity base-centered orthorhombic C49-TiSi2 before the low-resistivity face-centered orthorhombic C54-TiSi2 phase. Kinetic analysis of the shift in transformation temperatures with heating rate indicates that the activation energies for the formation of C49-TiSi2 and C54-TiSi2 are 2.1±0.2 and 3.8±0.5 eV, respectively, when formed during the same annealing cycle. The higher activation energy of formation of C54-TiSi2 as compared to C49-TiSi2 suggests that under very high heating rates and annealing temperatures, the formation of C49-TiSi2 before C54-TiSi2 might be completely or partially bypassed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 4918-4924 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We demonstrate that the high temperature polymorphic tantalum phase transition from the tetragonal beta phase to the cubic alpha phase causes a large decrease in the resistance of thin films and a complete stress relaxation in films that were intrinsically compressively stressed. 100 nm beta tantalum thin films with intrinsic stresses of 2.0×1010 dynes/cm2 (tensile) to −2.3×1010 dynes/cm2 (compressive) were deposited onto thermally oxidized (100) silicon wafers by evaporation or dc magnetron sputtering with argon. In situ stress and resistance at temperature were measured at 10 °C/min up to 850 °C in purified helium. Upon heating, the main stress mechanisms were elastic deformation at low temperature, plastic deformation at moderate temperatures and stress relief because of the beta-to-alpha phase transition at high temperatures. The temperature ranges over which the elastic and plastic deformation and the beta-to-alpha phase transition occurred varied with deposition pressure and substrate biasing. Incomplete compressive stress relaxation at high temperatures was observed if the film was initially deposited in the alpha phase or if the beta phase did not completely transform into alpha by 800 °C due to substrate biasing during the deposition. We conclude that the main stress relief mechanism for tantalum films with intrinsic compressive stresses to completely relax their stress is the beta-to-alpha phase transition, while for intrinsically tensile films, this transformation has a much smaller effect on the stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 6409-6415 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation of C54 TiSi2 using Ti–Nb alloys deposited on polycrystalline Si substrates was studied by means of in situ x-ray diffraction and resistance measurements during temperature ramping. Alloys with Nb contents ranging from 0 to 13.6 at. % were used. The formation temperature of C54 TiSi2 was reduced in the presence of Nb. However, the addition of Nb in Ti did not cause fundamental changes in the evolution of resistance versus temperature. This latter observation suggests that the mechanism for the formation of C54 TiSi2 remained the same in spite of the enhancement effect. For alloys with up to 8 at. % of Nb, the C49 TiSi2 phase formed first, as with pure Ti. When annealing the alloy with 13.6 at. % Nb, neither C49 TiSi2 nor C54 were found in the usual temperature ranges, instead, C40 (Nb,Ti)Si2 was observed. This phase transformed to C54 (Nb,Ti)Si2 above 950 °C. The apparent activation energy associated with the formation of C54 TiSi2 was obtained by annealing the samples at four different ramp rates from 3 to 27 K/s; it decreased continuously from 3.8 to 2.5 eV with increasing Nb content from 0 to 8 at. %. The apparent activation energy for the formation of C40 (Nb,Ti)Si2 was found to be 2.6 eV. The possible physical meaning, or lack thereof, of the high activation energies derived from experimental measurements is extensively discussed. A qualitative model is proposed whereby nucleation would be rate controlling in pure TiSi2, and interface motion in samples with 8 at. % Nb. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2516-2525 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present a model which accounts for the dramatic evolution in the microstructure of electroplated copper thin films near room temperature. Microstructure evolution occurs during a transient period of hours following deposition, and includes an increase in grain size, changes in preferred crystallographic texture, and decreases in resistivity, hardness, and compressive stress. The model is based on grain boundary energy in the fine-grained as-deposited films providing the underlying energy density which drives abnormal grain growth. As the grain size increases from the as-deposited value of 0.05–0.1 μm up to several microns, the model predicts a decreasing grain boundary contribution to electron scattering which allows the resistivity to decrease by tens of a percent to near-bulk values, as is observed. Concurrently, as the volume of the dilute grain boundary regions decreases, the stress is shown to change in the tensile direction by tens of a mega pascal, consistent with the measured values. The small as-deposited grain size is shown to be consistent with grain boundary pinning by a fine dispersion of particles or other pinning sites. In addition, room temperature diffusion of the pinning species along copper grain boundaries is shown to be adequate to allow the onset of abnormal grain growth after an initial incubation time, with a transient time inversely proportional to film thickness. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 6084-6087 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Pt(O) films having compositions ranging from pure Pt to amorphous platinum oxide a-PtOx (x∼1.4) were prepared by reactive sputtering and examined during and after heating to temperatures used for deposition and processing of high-epsilon (HE) and ferroelectric (FE) materials (400–650 °C). A two stage decomposition process was observed for a-PtOx (x∼1.4) films heated in N2, with the first stage of decomposition beginning at temperatures well below 400 °C. In an O2 ambient, decomposition was accompanied by formation of a crystalline Pt3O4 phase prior to complete decomposition to metallic Pt. However, the relatively slow rate of oxygen loss from a-PtOx suggests that significant amounts of oxygen should remain in Pt(O) electrodes after HE/FE layer deposition. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 5156-5159 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Infrared (IR)-absorbance spectroscopy was investigated as a technique for monitoring titanium silicide formation during the reaction of Ti films on (100) Si substrates. Films annealed to various stages of reaction were monitored by x-ray diffraction, film resistivity, and optical reflectance in order to relate the changes in the IR-absorbance spectra to reaction progress. Films at different stages of reaction showed distinctly different extinction coefficients α, and absorbance versus wave-number curves. IR absorbance was determined to be a useful indicator of reaction progress, especially in those cases where samples at different stages of the silicidation reaction have the same resistance but different absorbance behaviors. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In situ resistance versus temperature or time for reactions between 32 and 57.5 nm of titanium and undoped or doped polycrystalline silicon (boron, arsenic, or phosphorus, 7.9×1019–3.0×1020/cm3) has been measured and no clear correlation was found between the activation energy for the formation of the industrially important low-resistance C54-TiSi2 phase and its formation temperature. It is also demonstrated that with certain moderate doping levels typical of complementary metal-oxide-semiconductor manufacturing, boron or phosphorus-doped polycrystalline silicon can delay the formation of C54-TiSi2 more than arsenic-doped polycrystalline silicon. Finally, by using in situ resistance measurements, it is demonstrated that the "two-step'' thermal annealing process similar to a salicide process requires less thermal annealing time at high temperatures to form C54-TiSi2 than a single "one-step'' thermal anneal at the same temperature. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 7040-7044 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We describe a simple quasi-in situ resistivity technique and its application to the study of C49 to C54 TiSi2 conversion in narrow (0.1-1.0 μm) lines. This technique allowed comparison of both aggregate conversion versus time at temperature behavior and individual-line conversion versus time behavior for silicide lines of different linewidths. As linewidth decreased, the aggregate conversion versus time at temperature behavior slowed, and the conversion behaviors of individual lines having the same linewidth became more variable. Both of these observations are consistent with a nucleation-site-density controlled reaction under conditions of low nucleation site density. Correlations were also found between individual line behaviors and resistance to agglomeration; resistance to agglomeration (for 0.35–1.0 μm lines already in the C54 phase) was highest for lines which had "prompt'' conversion behaviors (as measured by the sheet resistance drop during the first minute of the conversion anneal). Additional data concerning the sensitivity of the initial sheet resistances to formation anneal conditions and linewidth is also briefly discussed. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 2781-2790 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The apparent activation energy Ea for Al grain growth, Al2Cu (aitch-theta-phase) precipitation, and Al2Cu dissolution were determined by ramped resistance measurements for both Al(Cu) blanket films and patterned lines. The Ea's measured for the initial stages of grain growth in 0.5-, 1-, and 2-μm-thick Al(4 wt % Cu), Al(2 wt % Cu), and Al films ranged from 1.19 to 1.46 eV. The Ea's for grain growth were higher for 0.6–0.9-μm-wide Al(Cu) lines than for blanket Al(Cu) films 1.89–3.1 eV, and the temperature of the peak transformation rate occurred at a much higher temperature, 310–400 vs 90–155 °C. This is due to the geometric constraints in patterned lines. The Ea's for Al2Cu precipitation in Al(4 wt % Cu) and Al(2 wt % Cu) films varied from 0.86 to 1.25 eV. For 0.6-μm-wide Al(4 wt % Cu) lines, the Ea for Al2Cu precipitation was 1.7 eV. The Ea's for Al2Cu dissolution increased with decreasing Cu content from 1.62–1.74 eV to 2.23–2.30 eV with Al(4 wt % Cu) and Al(2 wt % Cu) films, respectively. The temperature of the peak reaction rate Tp for Al2Cu dissolution increased markedly with increasing film thickness at constant ramp rates. These results demonstrate that the microstructure and Cu distribution in Al(Cu) interconnections on microelectronic chips vary as a function of feature size. This implies that blanket film data is not necessarily applicable to patterned features.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...