Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-07-07
    Description: {\bf Efficient eigenmode computation for the design of integrated optical chips.}The paper deals with adaptive multigrid methods for 2D Helmholtz eigenvalue problems arising in the design of integrated optical chips. Typical features of the technological problem are its geometric complexity, its multiscale structure, the possible occurrence of eigenvalue clusters, and the necessity of quite stringent required relative error tolerances. For reasons of sheer computational complexity, multigrid methods must be used to solve the discretized eigenvalue problems and adaptive grids must be automatically constructed to avoid an undesirable blow-up of the required number of nodes for these accuracies. In view of the problem specifications, an adaptive multigrid method based on Rayleigh quotient minimization, simultaneous eigenspace iteration, and conjugate gradient method as smoother is carefully selected. Its performance in the numerical simulation of a component of a rather recent optical chip (heterodyne receiver of HHI) is documented.
    Keywords: ddc:000
    Language: German
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-07
    Description: We present a general technique for constructing nonlocal transparent boundary conditions for one-dimensional Schrödinger-type equations. Our method supplies boundary conditions for the $\theta$-family of implicit one-step discretizations of Schrödinger's equation in time. The use of Mikusi\'nski's operator approach in time avoids direct and inverse transforms between time and frequency domains and thus implements the boundary conditions in a direct manner.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-07
    Description: We present a general technique for constructing nonlocal transparent boundary conditions for time-discretized one-dimensional Schrödinger type equations. The main tool of construction is the discrete counterpart to Mikusi\'nski's continuous algebraic operator approach. Existing techniques are simplified and generalized. Both adaptive time-steps and time-dependent exterior potentials are taken into account.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-07
    Description: We present a family of nonlocal transparent boundary conditions for the 2D Helmholtz equation. The whole domain, on which the Helmholtz equation is defined, is decomposed into an interior and an exterior domain. The corresponding interior Helmholtz problem is formulated as a variational problem in standard manner, representing a boundary value problem, whereas the exterior problem is posed as an initial value problem in the radial variable. This problem is then solved approximately by means of the Laplace transformation. The derived boundary conditions are asymptotically correct, model inhomogeneous exterior domains and are simple to implement.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-07
    Description: The reference wave vector of the paraxial Helmholtz equation is determined using various strategies which result all in similar expressions. The effort for its evaluation is so small that the reference wave vector can be adapted for each propagation step of an arbitrary BPM-algorithm.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-07
    Description: The paper is motivated by the need for a fast robust adaptive multigrid method to solve complex Helmholtz eigenvalue problems arising from the design of optical chips. A nonlinear multigrid method is developed, which can be regarded as an extension of a previous adaptive Rayleigh quotient minimization method for selfadjoint Helmholtz eigenproblems. Since the complex Helmholtz operator is just a compact nonselfadjoint perturbation of a selfadjoint operator, linear algebra techniques like Schur decomposition can be extended from the finite dimensional case. The efficiency of the derived adaptive nonlinear multigrid method is illustrated by computations for a technologically relevant integrated optics component containing Multi Quantum Well Layers.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-07
    Description: This report collects a number of proposals to determine the lowest eigensolutions of the scalar Helmholtz equation. The basic routine of all discussed algorithms is the standard Rayleigh quotient minimization process. The minimization is performed in a direct multilevel manner, and a subspace iteration is used to determine simultaneously a couple of eigensolutions. As smoother the nonlinear Gauß-Seidel, the nonlinear conjugate gradient method and a preconditioned version of this method are compared with respect to their efficiency. The numerical examples are based on realistic 1D and 2D models of integrated optics components.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-07
    Description: In this paper, we generalize the nonlocal discrete transparent boundary condition introduced by Schmidt and Deuflhard {[}Comp. Math. Appl. 29 (1995) 53-76{]} and Schmidt and Yevick {[}J. Comput. Phys. 134 (1997) 96-107{]} to propagation methods based on arbitrary Pad\'e approximations to the two-dimensional one-way Helmholtz equation. Our approach leads to a recursive formula for the coefficients appearing in the nonlocal condition which then yields an unconditionally stable propagation method.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-07
    Description: We present nonlocal discrete transparent boundary conditions for a fourth-order wide-angle approximation of the two-dimensional Helmholtz equation. The boundary conditions are exact in the sense that they supply the same discrete solution on a bounded interior domain as would be obtained by considering the problem on the entire unbounded domain with zero boundary conditions at infinity. The proposed algorithm results in an unconditionally stable propagation method. Numerical examples from optics illustrate the efficiency of our approach.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-07
    Description: The paper supplies an alternative derivation of the exact boundary conditions needed for the solution of time-harmonic acoustic scattering problems modeled by the Helmholtz equation. The main idea is to consider the exterior domain problem as an initial value problem with initial data given on the boundary of a disc or sphere. The solution of the exterior domain problem is obtained via Laplace transformation techniques, where the asymptotic Sommerfeld radiation condition is reformulated accordingly.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...