Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cerebellum  (9)
  • Thalamus  (4)
  • Cerebellar cortex  (2)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 3 (1967), S. 58-80 
    ISSN: 1432-1106
    Schlagwort(e): Mossy fibres ; Cerebellar cortex ; Golgi cells ; Granule cells ; Purkinje cells
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Potential fields and unitary spikes in the cat cerebellar cortex were generated specifically by mossy fibre volleys and recorded by means of microelectrodes. The mossy fibres were excited by trans-folial (T. F.) stimulation which was compared with juxtafastigial (J.F.) stimulation. Both were conditioned by local stimuli of parallel fibres. 2. In the granular layer, an incoming mossy fibre volley evoked a small diphasic potential (P1 N1) and about 0.4 msec later a second negative wave (N2) due to the excitatory synaptic current generated by synapses of mossy fibres with granule cells and Golgi cells. In the typical configuration the N2 wave usually had a superimposed double spike potential, which is due to impulses discharged first by Golgi cells and then, about 0.5 msec later, by granule cells. 3. The transmission of impulses along the perpendicular axons of the granule cells and thence along the parallel fibres gave the fairly sharp positive potential (P2) in the granular layer, and simultaneously the negative wave (N3) in the molecular layer. The parallel fibre impulses, in turn, synaptically excited and so evoked local responses and action potentials in the dendrites of Purkinje and other cells, which aided in the production of the latter part of the N3 wave. 4. The impulses in the Purkinje cell dendrites propagate into the granular layer via the Purkinje cell somata and axons so producing the negative wave (N4) in the Purkinje and the granular layer. 5. The late and prolonged positive wave (P3) may be attributable to the deep active sources produced by postsynaptic inhibition of Purkinje cells and of granule cells by basket and Golgi cells respectively. 6. There has been good correlation between the physiological findings and the anatomical structures of the various types of cells and the synaptic connections, even to the synapses of mossy fibres on Golgi cell dendrites that have been recently described by HÁmori and SzentÁgothai.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 46 (1982), S. 29-36 
    ISSN: 1432-1106
    Schlagwort(e): Premovement cortical potential ; Visually initiated movement ; Cerebellum ; Monkey
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Cortical field potentials preceding hand movements initiated by a visual stimulus were recorded with chronically implanted electrodes in premotor, motor and somatosensory cortices of monkeys, and the influences of cerebellar hemispherectomy on cortical potentials as well as reaction time of movements were examined. As reported previously, early surface-positive, depth-negative (2.5–3 mm depth from the cortical surface) premovement potentials emerged at about 40 ms latency after onset of the light stimulus bilaterally in premotor and forelimb motor areas. Early potentials in the forelimb motor area contralateral to the moving hand were followed at about 120 ms latency by surface-negative, depth-positive late premovement potentials which are considered to be mainly composed of superficial thalamo-cortical (T-C) responses. Unilateral hemispherectomy of the cerebellum contralateral to the motor area immediately eliminated the surface-negative, depth-positive potentials. Reaction time from onset of the light stimulus to the hand movement was prolonged by 90–250 ms after cerebellar hemispherectomy. If the dentate and interpositus nuclei were also lesioned, disappearance of the late potentials and delay of the movement continued for many months. However, if the interpositus was spared, there was earlier recovery of reaction time with simultaneous reappearance of the late premovement potentials in the motor cortex. The conclusion is drawn that the cerebellar hemisphere (neocerebellum) activates the motor cortex via superficial T-C projections and participates directly in the initiation of reaction movements in response to an external stimulus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-1106
    Schlagwort(e): Pallidum ; Cerebellar nuclei ; Thalamus ; Monkey
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Thalamic projections of the pallidum and the deep cerebellar nuclei were studied by unitary recordings as well as field potential analysis in the thalamus of squirrel monkeys (Saimiri sciureus) under sodium pentobarbital anesthesia. Stimulation of the pallidum produced a positive field potential preceded by incoming afferent fiber volleys in the thalamus. Spontaneous discharges of thalamic neurons were suppressed during this positive potential, and intracellular recordings from the thalamic neurons revealed that the time course of this field potential corresponded to that of the hyperpolarizing potential. The hyperpolarization was presumed to be a monosynaptic inhibitory postsynaptic potential by the short synaptic delay (about 0.5–0.7 ms) and responsiveness to high frequency stimulation (over 150 Hz). The positive field potential on stimulation of the external pallidal segment was distributed in L.po (VA) and the reticular thalamic nucleus around L.po, whereas that on stimulation of the internal segment was in V.o.a (the anterior basal part of VL) and in Z.o (upper part of VL). The projection of the external segment appeared to be less dense than that of the internal segment. The projection of deep cerebellar nuclei was situated in V.o.a, V.o.p (posterior part of basal part of VL), V.o.i (VLm), the intralaminar nucleus (CL), and some part of V. im (the rostral part of VPLo). Projections of the interpositus and dentate nuclei were distributed in a more anterior part than those of the fastigial nucleus. A certain topographical arrangement of the projections of these three nuclei was found in V.o.p, V.o.i and V.im. No significant overlap was detected between projections of the pallidum and the deep cerebellar nuclei within the thalamus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 16 (1972), S. 89-103 
    ISSN: 1432-1106
    Schlagwort(e): Cerebellum ; Thalamus ; Parietal Cortex
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. The cerebello-thalamo-cerebral projection system mediating the cerebellar-induced “superficial thalamo-cortical (T-C) response” (the basic type of the so-called recruiting response) to the anterior part of the middle suprasylvian gyrus was investigated electrophysiologically. Responses of thalamic neurones to stimulation of the cerebral cortex and the cerebellar nucleus (medial, interpositus and lateral) were recorded by microelectrodes. 2. In the anterior portions of the ventral thalamic nuclear complex, presumably in and/or around the ventral anterior (VA) nucleus, there were found neurones responding antidromically to stimulation of the suprasylvian cortex and orthodromically to that of the interpositus and the lateral nucleus of the cerebellum. They were called P neurones. The neurones responding antidromically to stimulation of the anterior sigmoid cortex and orthodromically to that of the cerebellar nuclei located mostly caudo ventrolateral to the place of P neurones, presumably in and/or around the ventral lateral (VL) nucleus. These were called F neurones. 3. The cerebellar excitation of P neurones was estimated on its latency to be monosynaptic and was usually followed by an inhibition lasting for more than 100 msec. Large unitary EPSPs were sometimes noted in P neurones on cerebellar stimulation as well as spontaneously. It was concluded that P neurones constitute the direct T-C projection system mediating the superficial T-C response (e. g., recruiting response) to the parietal cortex.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 16 (1972), S. 75-88 
    ISSN: 1432-1106
    Schlagwort(e): Cerebellum ; Thalamus ; Cerebral Cortex
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Cerebello-cerebral projections were electrophysiologically investigated in cats under light Nembutal anaesthesia. Marked responses were produced by stimulation of the interpositus and the lateral nucleus of the cerebellum not only in the pericruciate but also in the suprasylvian cortical areas, both areas being contralateral to the cerebellar nuclei stimulated. Medial nucleus stimulation set up little or no response in the cerebral cortex. 2. The previous electrophysiological study on thalamo-cortical (T-C) projections showed two different kinds of responses in the cortex due presumably to two different T-C projection systems, i. e., deep and superficial T-C responses (see Sasaki et al., 1970). According to laminar field potential analysis, the response in the pericruciate area is characterized by a deep T-C response which is often followed by a superficial T-C response, whereas the response in the parietal cortex consists of a pure superficial T-C response. Intracellular potential changes in cortical neurones elicited by cerebellar nucleus stimulation were consistent with the results of laminar field potential analysis. 3. Comparison between laminar field potentials in the same cortex produced by thalamic and cerebellar nucleus stimulation suggests that the response in the pericruciate cortex is mediated by the ventral lateral nucleus and that the response in the parietal cortex is relayed by the ventral anterior nucleus of the thalamus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 2 (1966), S. 18-34 
    ISSN: 1432-1106
    Schlagwort(e): Cerebellum ; Parallel fibres ; Basket cells ; Purkinje cells
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Stimulation through concentric electrodes on the surface of a wide cerebellar folium was employed to set up a parallel fibre volley or beam. Serial recording of the field potential was made over a range of depths along microelectrode tracks arranged in a transverse plane across the folium in order to discover the action on Purkinje cells, both those that were on-beam for the parallel fibre volley and those at various distances off-beam. A juxta-fastigial electrode was carefully placed so that an applied stimulus could excite the axons of Purkinje cells distributed across the folium under investigation, the antidromic propagation of impulses thus obtained being utilized to test the effect of parallel fibre volleys upon Purkinje cells. 2. The observations were in accord with the two actions that a parallel fibre volley would be expected to exert on Purkinje cells: a direct excitatory action by the synapses made by parallel fibres with the spines of the Purkinje cell dendrites; an inhibitory action mediated by the stellate and basket cells that themselves are directly excited by the parallel fibre volley. 3. The excitatory synaptic action would result in the two types of responses that were restricted to the narrow zone and superficial location of the parallel fibre volley: active sinks formed by this excitatory synaptic action on the superficial dendrites of Purkinje cells would account for the observed depth profile of extra-cellular slow potentials, a superficial negative wave reversing to a deeper positive wave formed by passive sources on deeper dendrites; superficial synaptic excitation would also account for the facilitation of the propagation of antidromic impulses into the superficial dendrites. 4. The inhibitory synaptic action would result in the two types of responses that were widely dispersed transversely and in depth, far beyond the traject of the parallel fibre volley: a slow positive potential wave with a maximum at a depth usually of 300–400 μ; an inhibitory action on the antidromic invasion of Purkinje cells. The transverse profiles of these two presumed indices of inhibitory action on Purkinje cells apparently revealed that a basket cell may give inhibitory synapses up to 1000 μ laterally from the location of its soma and dendrites. 5. A description is given of the variants in the transverse profiles of the deeper positive waves and of inhibitory actions of a parallel fibre volley that presumably are mediated by basket cells and also by the superficial stellate cells. These physiological findings are correlated with the histologically determined distribution of synapses from a basket cell onto Purkinje cells.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 23 (1975), S. 91-102 
    ISSN: 1432-1106
    Schlagwort(e): Association cortex ; Cerebellar cortex
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Responses evoked in the cerebellar cortex by stimulation of the parietal association cortex (rostral portions of the middle suprasylvian gyrus) were recorded and analysed in cats, and were compared with those by stimulation of the motor cortex (anterior sigmoid gyrus). 2. The parietal stimulation elicited early mossy fibre and late climbing fibre responses in the cerebellar cortex. The mossy fibre responses appeared at a latency of 2.0–2.5 msec and predominantly in the lateral (hemispherical) part of the contralateral cerebellum (mainly crus I, crus II and paramedian lobules). Cutting of the inferior cerebellar peduncle produced little or no influence upon the mossy fibre responses, which suggests that the mossy fibre responses are mediated chiefly by the pontine nuclei. 3. The climbing fibre responses were recorded at a latency of 17–19 msec and markedly in the contralateral intermediate and medial parts of IV–VI lobules. The responses were easily suppressed by anaesthesia and depended on the conditions of experimental animals. The unstable appearance of the responses and their longer latencies than those of the climbing fibre responses due to stimulation of the motor cortex imply indirect pathways from the parietal association cortex to the inferior olive. 4. The predominant projection of the parietal-induced mossy fibre responses to the lateral part of the cerebellum was compared with the mossy fibre projection from the motor cortex and was discussed as an important component in the cerebrocerebellar loops.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 3 (1967), S. 95-110 
    ISSN: 1432-1106
    Schlagwort(e): Mossy fibre pathways ; Cerebellum ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Field potentials in the vermal cerebellar cortex generated by a mossy fibre volley along reticulo-, cuneo- and spino-cerebellar tracts were recorded with microelectrodes and analysed by the same procedures as was done for the mossy fibre responses in the cortex by juxta-fastigial (J.F.) and trans-folial (T.F.) stimulations in the previous paper (Eccles, Sasaki and Strata 1967a). li 3. All these results corroborate the analyses and the interpretations of the field potentials in the cerebellar cortex produced by T.F.- and J.F.-evoked mossy fibre volleys in the previous paper. 4. There have not been found electrophysiologically significant differences, as Szentágothai (1964) has suggested, between the modes of mossy fibre terminations of the reticulo-cerebellar and the spino-cerebellar systems.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 22 (1975), S. 87-96 
    ISSN: 1432-1106
    Schlagwort(e): Thalamus ; Cortex ; Recruiting response ; Spindling
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. The thalamic neurones sending their axons to the parietal association cortex (middle suprasylvian gyrus) and receiving monosynaptic excitation from the cerebellar (interpositus or lateral) nucleus were recorded with microelectrodes extracellularly and intracellularly around the anterior ventral (VA) nucleus of the thalamus in cats. Such thalamic neurones are known to carry exclusively the impulses responsible for superficial thalamo-cortical (T-C) responses in the parietal cortex, being called superficial T-C neurones (see Sasaki et al., 1972a, b). 2. Repetitive (6–9/sec) stimulation of the centrum medianum-parafascicular complex (CM) or the intralaminar nuclei (IL) of the thalamus elicited grouped spike discharges of the neurone in synchronization with the recruiting responses in the parietal cortex. The grouped discharges usually preceded the respective cortical responses by several milliseconds. Numbers of the spikes in the grouped discharges increased and decreased as the recruiting responses waxed and waned on the repetitive stimulation. 3. The superficial T-C neurones also showed similar grouped discharges in synchronization with spindling-like, surface-negative cortical responses which occurred spontaneously or were evoked by single thalamic stimulation. 4. It was concluded that the superficial T-C neurones can convey impulses for recruiting responses and spindling-like responses from the thalamus directly to the cerebral cortex. They are supposed to constitute the final T-C pathway of the neuronal circuits of the recruiting system, i.e., non-specific T-C projection system.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 1 (1966), S. 1-16 
    ISSN: 1432-1106
    Schlagwort(e): Inhibitory interneurones ; Cerebellum ; Cat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. Extracellular microelectrode recording has been employed to study the responses of three types of interneurones in the cat cerebellar cortex: basket cells, superficial stellate cells and Golgi cells. The large unitary spike potentials of single cells were sharply localized and presumably were generated by impulse discharges from the cell somata. The characteristics of their responses described below sharply distinguished them from Purkinje cells. 2. The parallel fibre volleys generated by surface stimulation of a folium evoked brief repetitive discharges that were graded in respect of frequency and number. Maximum responses had as many as 10 impulses at an initial frequency of 500/sec. 3. At brief test intervals there was facilitation of the response to a second parallel fibre volley; at about 50 msec it passed over to depression for over 500 msec. 4. Stimulation deep in the cerebellum in the region of the fastigial nucleus (juxta-fastigial, J.F.) evoked by synaptic action a single or double discharge, presumably by the mossy fibre-granule cell-parallel fibre path, but climbing fibre stimulation from the inferior olive also usually had a weak excitatory action evoking never more than one impulse. 5. J.F. stimulation also had an inhibitory action on the repetitive discharge evoked by a parallel fibre volley. Possibly this is due to the inhibitory action of impulses in Purkinje cell axon collaterals. 6. There was a slow (7–30/sec) and rather irregular background discharge from all interneurones. The inhibitory actions of parallel fibre and J.F. stimulation silenced this discharge for some hundreds of milliseconds, probably by Golgi cell inhibition of a background mossy fibre input into granule cells. 7. All these various features were displayed by cells at depths from 180 to 500 μ; hence it was concluded that superficial stellate, basket and Golgi cells have similar properties, discrimination being possible only by depth, the respective depth ranges being superficial to 250μ, 250μ to 400μ, and deeper than 400μ.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...