Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (231)
  • 2005-2009  (2)
  • 1985-1989
  • 1870-1879
  • 2024  (85)
  • 2021  (148)
Years
Year
Language
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 294 (1992), S. 466-478 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 317 (1993), S. 474-484 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-21
    Description: Finding collective variables to describe some important coarse-grained information on physical systems, in particular metastable states, remains a key issue in molecular dynamics. Recently, machine learning techniques have been intensively used to complement and possibly bypass expert knowledge in order to construct collective variables. Our focus here is on neural network approaches based on autoencoders. We study some relevant mathematical properties of the loss function considered for training autoencoders, and provide physical interpretations based on conditional variances and minimum energy paths. We also consider various extensions in order to better describe physical systems, by incorporating more information on transition states at saddle points, and/or allowing for multiple decoders in order to describe several transition paths. Our results are illustrated on toy two dimensional systems and on alanine dipeptide.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-11
    Description: Mixed-Integer Linear Programming (MILP) is a ubiquitous and practical modelling paradigm that is essential for optimising a broad range of real-world systems. The backbone of all modern MILP solvers is the branch-and-cut algorithm, which is a hybrid of the branch-and-bound and cutting planes algorithms. Cutting planes (cuts) are linear inequalities that tighten the relaxation of a MILP. While a lot of research has gone into deriving valid cuts for MILPs, less emphasis has been put on determining which cuts to select. Cuts in general are generated in rounds, and a subset of the generated cuts must be added to the relaxation. The decision on which subset of cuts to add is called cut selection. This is a crucial task since adding too many cuts makes the relaxation large and slow to optimise over. Conversely, adding too few cuts results in an insufficiently tightened relaxation, and more relaxations need to be enumerated. To further emphasise the difficulty, the effectiveness of an applied cut is both dependent on the other applied cuts, and the state of the MILP solver. In this thesis, we present theoretical results on the importance and difficulty of cut selection, as well as practical results that use cut selection to improve general MILP solver performance. Improving general MILP solver performance is of great importance for practitioners and has many runoff effects. Reducing the solve time of currently solved systems can directly improve efficiency within the application area. In addition, improved performance enables larger systems to be modelled and optimised, and MILP to be used in areas where it was previously impractical due to time restrictions. Each chapter of this thesis corresponds to a publication on cut selection, where the contributions of this thesis can naturally be divided into four components. The first two components are motivated by instance-dependent performance. In practice, for each subroutine, including cut selection, MILP solvers have adjustable parameters with hard-coded default values. It is ultimately unrealistic to expect these default values to perform well for every instance. Rather, it would be ideal if the parameters were dependent on the given instance. To show this motivation is well founded, we first introduce a family of parametric MILP instances and cuts to showcase worst-case performance of cut selection for any fixed parameter value. We then introduce a graph neural network architecture and reinforcement learning framework for learning instance-dependent cut scoring parameters. In the following component, we formalise language for determining if a cut has theoretical usefulness from a polyhedral point of view in relation to other cuts. In addition, to overcome issues of infeasible projections and dual degeneracy, we introduce analytic center based distance measures. We then construct a lightweight multi-output regression model that predicts relative solver performance of an instance for a set of distance measures. The final two components are motivated by general MILP solver improvement via cut selection. Such improvement was shown to be possible, albeit difficult to achieve, by the first half of this thesis. We relate branch-and-bound and cuts through their underlying disjunctions. Using a history of previously computed Gomory mixed-integer cuts, we reduce the solve time of SCIP over the 67% of affected MIPLIB 2017 instances by 4%. In the final component, we introduce new cut scoring measures and filtering methods based on information from other MILP solving processes. The new cut selection techniques reduce the solve time of SCIP over the 97% of affected MIPLIB 2017 instances by 5%.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-19
    Description: Nirmatrelvir/Ritonavir is an oral treatment for mild to moderate COVID-19 cases with a high risk for a severe course of the disease. For this paper, a comprehensive literature review was performed, leading to a summary of currently available data on Nirmatrelvir/Ritonavir’s ability to reduce the risk of progressing to a severe disease state. Herein, the focus lies on publications that include comparisons between patients receiving Nirmatrelvir/Ritonavir and a control group. The findings can be summarized as follows: Data from the time when the Delta-variant was dominant show that Nirmatrelvir/Ritonavir reduced the risk of hospitalization or death by 88.9% for unvaccinated, non-hospitalized high-risk individuals. Data from the time when the Omicron variant was dominant found decreased relative risk reductions for various vaccination statuses: between 26% and 65% for hospitalization. The presented papers that differentiate between unvaccinated and vaccinated individuals agree that unvaccinated patients benefit more from treatment with Nirmatrelvir/Ritonavir. However, when it comes to the dependency of potential on age and comorbidities, further studies are necessary. From the available data, one can conclude that Nirmatrelvir/Ritonavir cannot substitute vaccinations; however, its low manufacturing cost and easy administration make it a valuable tool in fighting COVID-19, especially for countries with low vaccination rates.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-23
    Description: Cardiac electrograms are an important tool to study the spread of excitation waves inside the heart, which in turn underlie muscle contraction. Electrograms can be used to analyse the dynamics of these waves, e.g. in fibrotic tissue. In computational models, these analyses can be done with greater detail than during minimally invasive in vivo procedures. Whilst homogenised models have been used to study electrogram genesis, such analyses have not yet been done in cellularly resolved models. Such high resolution may be required to develop a thorough understanding of the mechanisms behind abnormal excitation patterns leading to arrhythmias. In this study, we derived electrograms from an excitation propagation simulation in the Extracellular, Membrane, Intracellular (EMI) model, which represents these three domains explicitly in the mesh. We studied the effects of the microstructural excitation dynamics on electrogram genesis and morphology. We found that electrograms are sensitive to the myocyte alignment and connectivity, which translates into micro-fractionations in the electrograms.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-29
    Description: The Robust Perron Cluster Analysis (PCCA+) has become a popular spectral clustering algorithm for coarse-graining transition matrices of nearly decomposable Markov chains with transition states. Originally developed for reversible Markov chains, the algorithm only worked for transition matrices with real eigenvalues. In this paper, we therefore extend the theoretical framework of PCCA+ to Markov chains with a complex eigen-decomposition. We show that by replacing a complex conjugate pair of eigenvectors by their real and imaginary components, a real representation of the same subspace is obtained, which is suitable for the cluster analysis. We show that our approach leads to the same results as the generalized PCCA+ (GPCCA), which replaces the complex eigen-decomposition by a conceptually more difficult real Schur decomposition. We apply the method on non-reversible Markov chains, including circular chains, and demonstrate its efficiency compared to GPCCA. The experiments are performed in the Matlab programming language and codes are provided.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-31
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-31
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-02
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-12
    Description: Collective variables (CVs) are low-dimensional projections of high-dimensional system states. They are used to gain insights into complex emergent dynamical behaviors of processes on networks. The relation between CVs and network measures is not well understood and its derivation typically requires detailed knowledge of both the dynamical system and the network topology. In this Letter, we present a data-driven method for algorithmically learning and understanding CVs for binary-state spreading processes on networks of arbitrary topology. We demonstrate our method using four example networks: the stochastic block model, a ring-shaped graph, a random regular graph, and a scale-free network generated by the Albert-Barabási model. Our results deliver evidence for the existence of low-dimensional CVs even in cases that are not yet understood theoretically.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: Periodic timetabling is a challenging planning task in public transport. As safety requirements are crucial, track allocation is indispensable for validating the practical feasibility of a railway timetable. For busy stations with limited capacities, this requires a detailed planning of turnarounds. It is therefore desirable to integrate timetabling not only with track allocation, but also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has been demonstrated to be effective for construction site railway rescheduling, as long as a good quality initial solution is available. In this paper, we discuss how to generate such a solution by extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track occupation, and minimum service frequency components. The SAT approach is superior to pure MIP on real-world instances of the S-Bahn Berlin network.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-16
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-28
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-27
    Language: German
    Type: incollection , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-27
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-03-04
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-03-05
    Description: In our combined experimental, theoretical and numerical work, we study the out of equilibrium deformations in a shrinking ring of optically trapped, interacting colloidal particles. Steerable optical tweezers are used to confine dielectric microparticles along a circle of discrete harmonic potential wells, and to reduce the ring radius at a controlled quench speed. We show that excluded-volume interactions are enough to induce particle sliding from their equilibrium positions and nonequilibrium zigzag roughening of the colloidal structure. Our work unveils the underlying mechanism of interfacial deformation in radially driven microscopic discrete rings.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-03-06
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-03-07
    Description: The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-03-14
    Description: In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-03-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-03-18
    Description: Agent-based models (ABMs) provide an intuitive and powerful framework for studying social dynamics by modeling the interactions of individuals from the perspective of each individual. In addition to simulating and forecasting the dynamics of ABMs, the demand to solve optimization problems to support, for example, decision-making processes naturally arises. Most ABMs, however, are non-deterministic, high-dimensional dynamical systems, so objectives defined in terms of their behavior are computationally expensive. In particular, if the number of agents is large, evaluating the objective functions often becomes prohibitively time-consuming. We consider data-driven reduced models based on the Koopman generator to enable the efficient solution of multi-objective optimization problems involving ABMs. In a first step, we show how to obtain data-driven reduced models of non-deterministic dynamical systems (such as ABMs) that depend on potentially nonlinear control inputs. We then use them in the second step as surrogate models to solve multi-objective optimal control problems. We first illustrate our approach using the example of a voter model, where we compute optimal controls to steer the agents to a predetermined majority, and then using the example of an epidemic ABM, where we compute optimal containment strategies in a prototypical situation. We demonstrate that the surrogate models effectively approximate the Pareto-optimal points of the ABM dynamics by comparing the surrogate-based results with test points, where the objectives are evaluated using the ABM. Our results show that when objectives are defined by the dynamic behavior of ABMs, data-driven surrogate models support or even enable the solution of multi-objective optimization problems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-03-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-03-19
    Description: This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-03-19
    Description: Epidemiological models can not only be used to forecast the course of a pandemic like COVID-19, but also to propose and design non-pharmaceutical interventions such as school and work closing. In general, the design of optimal policies leads to nonlinear optimization problems that can be solved by numerical algorithms. Epidemiological models come in different complexities, ranging from systems of simple ordinary differential equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading processes in detail, but are extremely expensive to optimize. We consider policy optimization in a prototypical situation modeled as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in particular with respect to convergence speed, are given for illustrative examples.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-03-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-03-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-03-19
    Description: We study the solution of the rolling stock rotation problem with predictive maintenance (RSRP-PdM) by an iterative refinement approach that is based on a state-expanded event-graph. In this graph, the states are parameters of a failure distribution, and paths correspond to vehicle rotations with associated health state approximations. An optimal set of paths including maintenance can be computed by solving an integer linear program. Afterwards, the graph is refined and the procedure repeated. An associated linear program gives rise to a lower bound that can be used to determine the solution quality. Computational results for six instances derived from real-world timetables of a German railway company are presented. The results show the effectiveness of the approach and the quality of the solutions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-03-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-03-19
    Description: Statistical shape models are an essential tool for various tasks in medical image analysis, including shape generation, reconstruction and classification. Shape models are learned from a population of example shapes, which are typically obtained through segmentation of volumetric medical images. In clinical practice, highly anisotropic volumetric scans with large slice distances are prevalent, e.g., to reduce radiation exposure in CT or image acquisition time in MR imaging. For existing shape modeling approaches, the resolution of the emerging model is limited to the resolution of the training shapes. Therefore, any missing information between slices prohibits existing methods from learning a high-resolution shape prior. We propose a novel shape modeling approach that can be trained on sparse, binary segmentation masks with large slice distances. This is achieved through employing continuous shape representations based on neural implicit functions. After training, our model can reconstruct shapes from various sparse inputs at high target resolutions beyond the resolution of individual training examples. We successfully reconstruct high-resolution shapes from as few as three orthogonal slices. Furthermore, our shape model allows us to embed various sparse segmentation masks into a common, low-dimensional latent space — independent of the acquisition direction, resolution, spacing, and field of view. We show that the emerging latent representation discriminates between healthy and pathological shapes, even when provided with sparse segmentation masks. Lastly, we qualitatively demonstrate that the emerging latent space is smooth and captures characteristic modes of shape variation. We evaluate our shape model on two anatomical structures: the lumbar vertebra and the distal femur, both from publicly available datasets.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 33
  • 34
    Publication Date: 2024-03-19
    Description: In multipartite Bell scenarios, we study the nonlocality robustness of the Greenberger-Horne-Zeilinger (GHZ) state. When each party performs planar measurements forming a regular polygon, we exploit the symmetry of the resulting correlation tensor to drastically accelerate the computation of (i) a Bell inequality via Frank-Wolfe algorithms and (ii) the corresponding local bound. The Bell inequalities obtained are facets of the symmetrized local polytope and they give the best-known upper bounds on the nonlocality robustness of the GHZ state for three to ten parties. Moreover, for four measurements per party, we generalize our facets and hence show, for any number of parties, an improvement on Mermin's inequality in terms of noise robustness. We also compute the detection efficiency of our inequalities and show that some give rise to the activation of nonlocality in star networks, a property that was only shown with an infinite number of measurements.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-03-22
    Description: Markov processes serve as foundational models in many scientific disciplines, such as molecular dynamics, and their simulation forms a common basis for analysis. While simulations produce useful trajectories, obtaining macroscopic information directly from microstate data presents significant challenges. This paper addresses this gap by introducing the concept of membership functions being the macrostates themselves. We derive equations for the holding times of these macrostates and demonstrate their consistency with the classical definition. Furthermore, we discuss the application of the ISOKANN method for learning these quantities from simulation data. In addition, we present a novel method for extracting transition paths based on the ISOKANN results and demonstrate its efficacy by applying it to simulations of the 𝜇-opioid receptor. With this approach we provide a new perspective on analyzing the macroscopic behaviour of Markov systems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-03-22
    Description: We propose two graph neural network layers for graphs with features in a Riemannian manifold. First, based on a manifold-valued graph diffusion equation, we construct a diffusion layer that can be applied to an arbitrary number of nodes and graph connectivity patterns. Second, we model a tangent multilayer perceptron by transferring ideas from the vector neuron framework to our general setting. Both layers are equivariant with respect to node permutations and isometries of the feature manifold. These properties have been shown to lead to a beneficial inductive bias in many deep learning tasks. Numerical examples on synthetic data as well as on triangle meshes of the right hippocampus to classify Alzheimer's disease demonstrate the very good performance of our layers.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-03-21
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-03-21
    Description: Knee osteoarthritis (KOA) is a degenerative disease that leads to pain and loss of function. It is estimated to affect over 500 million humans world-wide and is one of the most common reasons for disability. KOA is usually diagnosed by radiologists or clinical experts by anamnesis, physical examination, and by assessing medical image data. The latter is typically acquired using X-Ray or magnetic resonance imaging. Since manual image reading is subjective, tedious and time-consuming, automated methods are required for a fast and objective decision support and for a better understanding of the pathogenesis of KOA. This thesis sets a foundation towards automated computation of image-based KOA biomarkers for holistic assessment of the knee. This involves the assessment of multiple knee bones and soft tissues. An assessment of particular structures requires localization of these tissues. In order to automate a faithful localization of anatomical structures, deep learning-based methods are investigated and utilized. Additionally, convolutional neural networks (CNNs) are used for classification of medical image data, i.e., for a direct determination of the disease status and to detect anatomical structures and landmarks. The automatically computed anatomical volumes, locations, and other measurements are finally compared to values acquired by clinical experts and evaluated for clustering of KOA groups, classification of KOA severity, prediction of KOA progression, and prediction of total knee replacement. In various experiments it is shown that CNN-based methods are suitable for accurate medical image segmentation, object detection, landmark detection, and direct classification of disease stages from the image data. Computed features related to the menisci are found to be most expressive in terms of clustering of KOA groups and predicting of future disease states, thus allowing diagnosis of current KOA conditions and prediction of future conditions. The conclusion of this thesis is that machine learning-based, fully automated processing of medical image data shows potential for diagnosis and prediction of KOA grades. Future studies could investigate additional features in order to achieve an assessment of the whole knee or validate the findings of this work in clinical studies.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-03-21
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-03-21
    Description: It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-03-21
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-03-21
    Description: The dominant eigenfunctions of the Koopman operator characterize the metastabilities and slow-timescale dynamics of stochastic diffusion processes. In the context of molecular dynamics and Markov state modeling, they allow for a description of the location and frequencies of rare transitions, which are hard to obtain by direct simulation alone. In this article, we reformulate the eigenproblem in terms of the ISOKANN framework, an iterative algorithm that learns the eigenfunctions by alternating between short burst simulations and a mixture of machine learning and classical numerics, which naturally leads to a proof of convergence. We furthermore show how the intermediate iterates can be used to reduce the sampling variance by importance sampling and optimal control (enhanced sampling), as well as to select locations for further training (adaptive sampling). We demonstrate the usage of our proposed method in experiments, increasing the approximation accuracy by several orders of magnitude.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-03-26
    Description: We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state (NESS) systems. EPR-Net leverages a nice mathematical fact that the desired negative potential gradient is simply the orthogonal projection of the driving force of the underlying dynamics in a weighted inner-product space. Remarkably, our loss function has an intimate connection with the steady entropy production rate (EPR), enabling simultaneous landscape construction and EPR estimation. We introduce an enhanced learning strategy for systems with small noise, and extend our framework to include dimensionality reduction and state-dependent diffusion coefficient case in a unified fashion. Comparative evaluations on benchmark problems demonstrate the superior accuracy, effectiveness, and robustness of EPR-Net compared to existing methods. We apply our approach to challenging biophysical problems, such as an 8D limit cycle and a 52D multi-stability problem, which provide accurate solutions and interesting insights on constructed landscapes. With its versatility and power, EPR-Net offers a promising solution for diverse landscape construction problems in biophysics.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-03-26
    Description: Grazing-incidence X-ray diffraction (GIXRD) is a scattering technique which allows one to characterize the structure of fluid interfaces down to the molecular scale, including the measurement of the surface tension and of the interface roughness. However, the corresponding standard data analysis at non-zero wave numbers has been criticized as to be inconclusive because the scattering intensity is polluted by the unavoidable scattering from the bulk. Here we overcome this ambiguity by proposing a physically consistent model of the bulk contribution which is based on a minimal set of assumptions of experimental relevance. To this end, we derive an explicit integral expression for the background scattering, which can be determined numerically from the static structure factors of the coexisting bulk phases as independent input. Concerning the interpretation of GIXRD data inferred from computer simulations, we account also for the finite sizes of the bulk phases, which are unavoidable in simulations. The corresponding leading-order correction beyond the dominant contribution to the scattered intensity is revealed by asymptotic analysis, which is characterized by the competition between the linear system size and the X-ray penetration depth in the case of simulations. Specifically, we have calculated the expected GIXRD intensity for scattering at the planar liquid--vapor interface of Lennard-Jones fluids with truncated pair interactions via extensive, high-precision simulations. The reported data cover interfacial and bulk properties of fluid states along the whole liquid--vapor coexistence line. A sensitivity analysis demonstrates the robustness of our findings concerning the detailed definition of the mean interface position. We conclude that previous claims of an enhanced surface tension at mesoscopic scales are amenable to unambiguous tests via scattering experiments.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-03-26
    Description: Estimating the rate of rare conformational changes in molecular systems is one of the goals of molecular dynamics simulations. In the past few decades, a lot of progress has been done in data-based approaches toward this problem. In contrast, model-based methods, such as the Square Root Approximation (SqRA), directly derive these quantities from the potential energy functions. In this article, we demonstrate how the SqRA formalism naturally blends with the tensor structure obtained by coupling multiple systems, resulting in the tensor-based Square Root Approximation (tSqRA). It enables efficient treatment of high-dimensional systems using the SqRA and provides an algebraic expression of the impact of coupling energies between molecular subsystems. Based on the tSqRA, we also develop the projected rate estimation, a hybrid data-model-based algorithm that efficiently estimates the slowest rates for coupled systems. In addition, we investigate the possibility of integrating low-rank approximations within this framework to maximize the potential of the tSqRA.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-03-28
    Description: The microphysical structure of the lunar regolith provides information on the geologic history of the Moon. We used remote sensing measurements of thermal emission and a thermophysical model to determine the microphysical properties of the lunar regolith. We expand upon previous investigations by developing a microphysical thermal model, which more directly simulates regolith properties, such as grain size and volume filling factor. The modeled temperatures are matched with surface temperatures measured by the Diviner Lunar Radiometer Experiment on board the Lunar Reconnaissance Orbiter. The maria and highlands are investigated separately and characterized in the model by a difference in albedo and grain density. We find similar regolith temperatures for both terrains, which can be well described by similar volume filling factor profiles and mean grain sizes obtained from returned Apollo samples. We also investigate a significantly lower thermal conductivity for highlands, which formally also gives a very good solution, but in a parameter range that is well outside the Apollo data. We then study the latitudinal dependence of regolith properties up to ±80° latitude. When assuming constant regolith properties, we find that a variation of the solar incidence-dependent albedo can reduce the initially observed latitudinal gradient between model and Diviner measurements significantly. A better match between measurements and model can be achieved by a variation in intrinsic regolith properties with a decrease in bulk density with increasing latitude. We find that a variation in grain size alone cannot explain the Diviner measurements at higher latitudes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 47
  • 48
    Publication Date: 2024-04-02
    Description: The decarbonization of the European energy system demands a rapid and comprehensive transformation while securing energy supplies at all times. Still, natural gas plays a crucial role in this process. Recent unexpected events forced drastic changes in gas routes throughout Europe. Therefore, operational-level analysis of the gas transport networks and technical capacities to cope with these transitions using unconventional scenarios has become essential. Unfortunately, data limitations often hinder such analyses. To overcome this challenge, we propose a mathematical model-based scenario generator that enables operational analysis of the European gas network using open data. Our approach focuses on the consistent analysis of specific partitions of the gas transport network, whose network topology data is readily available. We generate reproducible and consistent node-based gas in/out-flow scenarios for these defined network partitions to enable feasibility analysis and data quality assessment. Our proposed method is demonstrated through several applications that address the feasibility analysis and data quality assessment of the German gas transport network. By using open data and a mathematical modeling approach, our method allows for a more comprehensive understanding of the gas transport network's behavior and assists in decision-making during the transition to decarbonization.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-04-05
    Description: This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the stochastic-spatial particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-04-03
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 51
  • 52
    Publication Date: 2024-04-10
    Description: In this work, we study the geodesics of the space of certain geometrically and physically motivated subspaces of the space of immersed curves endowed with a first order Sobolev metric. This includes elastic curves and also an extension of some results on planar concentric circles to surfaces. The work focuses on intrinsic and constructive approaches.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-04-10
    Description: Collaborative comparisons and combinations of epidemic models are used as policy-relevant evidence during epidemic outbreaks. In the process of collecting multiple model projections, such collaborations may gain or lose relevant information. Typically, modellers contribute a probabilistic summary at each time-step. We compared this to directly collecting simulated trajectories. We aimed to explore information on key epidemic quantities; ensemble uncertainty; and performance against data, investigating potential to continuously gain information from a single cross-sectional collection of model results. Methods We compared July 2022 projections from the European COVID-19 Scenario Modelling Hub. Five modelling teams projected incidence in Belgium, the Netherlands, and Spain. We compared projections by incidence, peaks, and cumulative totals. We created a probabilistic ensemble drawn from all trajectories, and compared to ensembles from a median across each model’s quantiles, or a linear opinion pool. We measured the predictive accuracy of individual trajectories against observations, using this in a weighted ensemble. We repeated this sequentially against increasing weeks of observed data. We evaluated these ensembles to reflect performance with varying observed data. Results. By collecting modelled trajectories, we showed policy-relevant epidemic characteristics. Trajectories contained a right-skewed distribution well represented by an ensemble of trajectories or a linear opinion pool, but not models’ quantile intervals. Ensembles weighted by performance typically retained the range of plausible incidence over time, and in some cases narrowed this by excluding some epidemic shapes. Conclusions. We observed several information gains from collecting modelled trajectories rather than quantile distributions, including potential for continuously updated information from a single model collection. The value of information gains and losses may vary with each collaborative effort’s aims, depending on the needs of projection users. Understanding the differing information potential of methods to collect model projections can support the accuracy, sustainability, and communication of collaborative infectious disease modelling efforts. Data availability All code and data available on Github: https://github.com/covid19-forecast-hub-europe/aggregation-info-loss
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-04-16
    Description: For decades, de Casteljau's algorithm has been used as a fundamental building block in curve and surface design and has found a wide range of applications in fields such as scientific computing, and discrete geometry to name but a few. With increasing interest in nonlinear data science, its constructive approach has been shown to provide a principled way to generalize parametric smooth curves to manifolds. These curves have found remarkable new applications in the analysis of parameter-dependent, geometric data. This article provides a survey of the recent theoretical developments in this exciting area as well as its applications in fields such as geometric morphometrics and longitudinal data analysis in medicine, archaeology, and meteorology.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-04-15
    Description: The rolling stock rotation problem with predictive maintenance (RSRP-PdM) involves the assignment of trips to a fleet of vehicles with integrated maintenance scheduling based on the predicted failure probability of the vehicles. These probabilities are determined by the health states of the vehicles, which are considered to be random variables distributed by a parameterized family of probability distribution functions. During the operation of the trips, the corresponding parameters get updated. In this article, we present a dual solution approach for RSRP-PdM and generalize a linear programming based lower bound for this problem to families of probability distribution functions with more than one parameter. For this purpose, we define a rounding function that allows for a consistent underestimation of the parameters and model the problem by a state-expanded event-graph in which the possible states are restricted to a discrete set. This induces a flow problem that is solved by an integer linear program. We show that the iterative refinement of the underlying discretization leads to solutions that converge from below to an optimal solution of the original instance. Thus, the linear relaxation of the considered integer linear program results in a lower bound for RSRP-PdM. Finally, we report on the results of computational experiments conducted on a library of test instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-04-11
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-04-23
    Description: Protein–protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays or AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold-Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-04-23
    Description: Task-adapted image reconstruction methods using end-to-end trainable neural networks (NNs) have been proposed to optimize reconstruction for subsequent processing tasks, such as segmentation. However, their training typically requires considerable hardware resources and thus, only relatively simple building blocks, e.g. U-Nets, are typically used, which, albeit powerful, do not integrate model-specific knowledge. In this work, we extend an end-to-end trainable task-adapted image reconstruction method for a clinically realistic reconstruction and segmentation problem of bone and cartilage in 3D knee MRI by incorporating statistical shape models (SSMs). The SSMs model the prior information and help to regularize the segmentation maps as a final post-processing step. We compare the proposed method to a state-of-the-art (SOTA) simultaneous multitask learning approach for image reconstruction and segmentation (MTL) and to a complex SSMs-informed segmentation pipeline (SIS). Our experiments show that the combination of joint end-to-end training and SSMs to further regularize the segmentation maps obtained by MTL highly improves the results, especially in terms of mean and maximal surface errors. In particular, we achieve the segmentation quality of SIS and, at the same time, a substantial model reduction that yields a five-fold decimation in model parameters and a computational speedup of an order of magnitude. Remarkably, even for undersampling factors of up to R=8, the obtained segmentation maps are of comparable quality to those obtained by SIS from ground-truth images.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-04-22
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-04-22
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-04-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-04-17
    Description: We present a heuristic solution approach for the rolling stock rotation problem with predictive maintenance (RSRP-PdM). The task of this problem is to assign a sequence of trips to each of the vehicles and to schedule their maintenance such that all trips can be operated. Here, the health states of the vehicles are considered to be random variables distributed by a family of probability distribution functions, and the maintenance services should be scheduled based on the failure probability of the vehicles. The proposed algorithm first generates a solution by solving an integer linear program and then heuristically improves this solution by applying a local search procedure. For this purpose, the trips assigned to the vehicles are split up and recombined, whereby additional deadhead trips can be inserted between the partial assignments. Subsequently, the maintenance is scheduled by solving a shortest path problem in a state-expanded version of a space-time graph restricted to the trips of the individual vehicles. The solution approach is tested and evaluated on a set of test instances based on real-world timetables.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-04-30
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-04-30
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-04-26
    Description: The stability of shear layers in fluid flows is a crucial factor in forming vortices and jets and plays a fundamental role in the development of turbulence. Such shear layer instabilities are ubiquitous in natural phenomena, such as atmospheric and oceanic flows, contributing to the formation of weather systems and predicting tsunamis. This study specifically focuses on the stability of a shear layer sandwiched between two semi-infinite layers within a two-dimensional flow. The velocity profile of the shear layer is assumed to be linearly dependent on the vertical coordinate, while the velocity of the other layers remains uniform with differing strengths. The effect of viscosity and surface tension is ignored to simplify the analysis. The shallow water equations are used to analyze the interface stability of the shear layer, and the resulting dispersion relation between wave frequency and other wave characteristics is obtained. This relation incorporates Whittaker functions and their first derivatives and is used to derive appropriate limits corresponding to various physical conditions. Our study thus contributes to a deeper understanding of the stability of shear layers and their implications for natural phenomena.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-04-26
    Description: This paper proposes an almost feasible Sequential Linear Programming (afSLP) algorithm. In the first part, the practical limitations of previously proposed Feasible Sequential Linear Programming (FSLP) methods are discussed along with illustrative examples. Then, we present a generalization of FSLP based on a tolerance-tube method that addresses the shortcomings of FSLP. The proposed algorithm afSLP consists of two phases. Phase I starts from random infeasible points and iterates towards a relaxation of the feasible set. Once the tolerance-tube around the feasible set is reached, phase II is started and all future iterates are kept within the tolerance-tube. The novel method includes enhancements to the originally proposed tolerance-tube method that are necessary for global convergence. afSLP is shown to outperform FSLP and the state-of-the-art solver IPOPT on a SCARA robot optimization problem.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-04-24
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-04-24
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-05-06
    Description: The multi-grid reaction-diffusion master equation (mgRDME) provides a generalization of stochastic compartment-based reaction-diffusion modelling described by the standard reaction-diffusion master equation (RDME). By enabling different resolutions on lattices for biochemical species with different diffusion constants, the mgRDME approach improves both accuracy and efficiency of compartment-based reaction-diffusion simulations. The mgRDME framework is examined through its application to morphogen gradient formation in stochastic reaction-diffusion scenarios, using both an analytically tractable first-order reaction network and a model with a second-order reaction. The results obtained by the mgRDME modelling are compared with the standard RDME model and with the (more detailed) particle-based Brownian dynamics simulations. The dependence of error and numerical cost on the compartment sizes is defined and investigated through a multi-objective optimization problem.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-05-13
    Description: Existing planning approaches for onshore wind farm siting and grid integration often do not meet minimum cost solutions or social and environmental considerations. In this paper, we develop an exact approach for the integrated layout and cable routing problem of onshore wind farm planning using the Quota Steiner tree problem. Applying a novel transformation on a known directed cut formulation, reduction techniques, and heuristics, we design an exact solver that makes large problem instances solvable and outperforms generic MIP solvers. In selected regions of Germany, the trade-offs between minimizing costs and landscape impact of onshore wind farm siting are investigated. Although our case studies show large trade-offs between the objective criteria of cost and landscape impact, small burdens on one criterion can significantly improve the other criteria. In addition, we demonstrate that contrary to many approaches for exclusive turbine siting, grid integration must be simultaneously optimized to avoid excessive costs or landscape impacts in the course of a wind farm project. Our novel problem formulation and the developed solver can assist planners in decision-making and help optimize wind farms in large regions in the future.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-05-13
    Language: English
    Type: other , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-05-13
    Description: We have investigated how Langevin dynamics is affected by the friction coefficient using the novel algorithm ISOKANN, which combines the transfer operator approach with modern machine learning techniques. ISOKANN describes the dynamics in terms of an invariant subspace projection of the Koopman operator defined in the entire state space, avoiding approximations due to dimensionality reduction and discretization. Our results are consistent with the Kramers turnover and show that in the low and moderate friction regimes, metastable macro-states and transition rates are defined in phase space, not only in position space.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-05-13
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-05-08
    Description: This paper is concerned with collective variables, or reaction coordinates, that map a discrete-in-time Markov process X_n in R^d to a (much) smaller dimension k≪d. We define the effective dynamics under a given collective variable map ξ as the best Markovian representation of X_n under ξ. The novelty of the paper is that it gives strict criteria for selecting optimal collective variables via the properties of the effective dynamics. In particular, we show that the transition density of the effective dynamics of the optimal collective variable solves a relative entropy minimization problem from certain family of densities to the transition density of X_n. We also show that many transfer operator-based data-driven numerical approaches essentially learn quantities of the effective dynamics. Furthermore, we obtain various error estimates for the effective dynamics in approximating dominant timescales / eigenvalues and transition rates of the original process X_n and how optimal collective variables minimize these errors. Our results contribute to the development of theoretical tools for the understanding of complex dynamical systems, e.g. molecular kinetics, on large timescales. These results shed light on the relations among existing data-driven numerical approaches for identifying good collective variables, and they also motivate the development of new methods.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-05-07
    Description: This paper explores memory mechanisms in complex socio-technical systems, using a mobility demand model as an example case. We simplified a large-scale agent-based mobility model into a Markov process and discover that the mobility decision process is non-Markovian. This is due to its dependence on the system’s history, including social structure and local infrastructure, which evolve based on prior mobility decisions. To make the process Markovian, we extend the state space by incorporating two history-dependent components. Although our model is a very much reduced version of the original one, it remains too complex for the application of usual analytic methods. Instead, we employ simulations to examine the functionalities of the two history-dependent components. We think that the structure of the analyzed stochastic process is exemplary for many socio-technical, -economic, -ecological systems. Additionally, it exhibits analogies with the framework of extended evolution, which has previously been used to study cultural evolution.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 76
  • 77
    Publication Date: 2024-05-16
    Description: The Koopman operator has entered and transformed many research areas over the last years. Although the underlying concept–representing highly nonlinear dynamical systems by infinite-dimensional linear operators–has been known for a long time, the availability of large data sets and efficient machine learning algorithms for estimating the Koopman operator from data make this framework extremely powerful and popular. Koopman operator theory allows us to gain insights into the characteristic global properties of a system without requiring detailed mathematical models. We will show how these methods can also be used to analyze complex networks and highlight relationships between Koopman operators and graph Laplacians.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 78
  • 79
    Publication Date: 2024-05-20
    Description: The computation of Voronoi Diagrams, or their dual Delauney triangulations is difficult in high dimensions. In a recent publication Polianskii and Pokorny propose an iterative randomized algorithm facilitating the approximation of Voronoi tesselations in high dimensions. In this paper, we provide an improved vertex search method that is not only exact but even faster than the bisection method that was previously recommended. Building on this we also provide a depth-first graph-traversal algorithm which allows us to compute the entire Voronoi diagram. This enables us to compare the outcomes with those of classical algorithms like qHull, which we either match or marginally beat in terms of computation time. We furthermore show how the raycasting algorithm naturally lends to a Monte Carlo approximation for the volume and boundary integrals of the Voronoi cells, both of which are of importance for finite Volume methods. We compare the Monte-Carlo methods to the exact polygonal integration, as well as a hybrid approximation scheme.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 80
    Title: Künstliche Intelligenz und wissenschaftliches Arbeiten : ChatGPT & Co.: Der Turbo für ein erfolgreiches Studium
    Author: Bucher, Ulrich
    Contributer: Holzweißig, Kai , Schwarzer, Markus
    Publisher: München :Verlag Franz Vahlen,
    Year of publication: 2024
    Pages: X, 181 Seiten
    ISBN: 978-3-8006-7322-3
    Type of Medium: Book
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 81
    Online Resource
    Online Resource
    Cham :Springer,
    Title: Logic-Based Benders Decomposition : Theory and Applications
    Author: Hooker, John
    Edition: 1st ed. 2024.
    Publisher: Cham :Springer,
    Year of publication: 2024
    ISBN: 978-3-031-45039-6
    Type of Medium: Online Resource
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 82
    Book
    Book
    Beazil ; Mexico ; Singapore :Cengage Learning,
    Title: Introductory econometrics : a modern approach
    Author: Wooldridge, Jeffrey M.
    Edition: 8th edition
    Publisher: Beazil ; Mexico ; Singapore :Cengage Learning,
    Year of publication: 2024
    Pages: XXII, 826 Seiten
    ISBN: 978-0-357-90016-1
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 83
    Title: Anwendungen mit GPT-4 und ChatGPT entwickeln : intelligente Chatbots, Content-Generatoren und mehr erstellen
    Author: Caelen, Olivier
    Contributer: Blete, Marie-Alice
    Edition: 1. Auflage
    Publisher: Heidelberg :O'Reilly,
    Year of publication: 2024
    Pages: 158 Seiten
    ISBN: 978-3-96009-241-4
    Type of Medium: Book
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 84
    Book
    Book
    Stuttgart :Klett-Cotta,
    Title: ¬Eine¬ kurze Geschichte der Künstlichen Intelligenz /
    Author: Wildenhain, Michael
    Publisher: Stuttgart :Klett-Cotta,
    Year of publication: 2024
    Pages: 119 Seiten
    ISBN: 978-3-7681-9824-0
    Type of Medium: Book
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 85
    Title: ¬The¬ New Mathematical Coloring Book : Mathematics of Coloring and the Colorful Life of Its Creators
    Author: Soifer, Alexander
    Edition: 2nd ed. 2024
    Publisher: New York :SpringerNew Mathematical Coloring Book,
    Year of publication: 2024
    Pages: XLVIII, 841 p. 80 illus., 77 illus.
    ISBN: 9781071635971
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-01-12
    Description: Image segmentation still represents an active area of research since no universal solution can be identified. Traditional image segmentation algorithms are problem-specific and limited in scope. On the other hand, machine learning offers an alternative paradigm where predefined features are combined into different classifiers, providing pixel-level classification and segmentation. However, machine learning only can not address the question as to which features are appropriate for a certain classification problem. The article presents an automated image segmentation and classification platform, called Active Segmentation, which is based on ImageJ. The platform integrates expert domain knowledge, providing partial ground truth, with geometrical feature extraction based on multi-scale signal processing combined with machine learning. The approach in image segmentation is exemplified on the ISBI 2012 image segmentation challenge data set. As a second application we demonstrate whole image classification functionality based on the same principles. The approach is exemplified using the HeLa and HEp-2 data sets. Obtained results indicate that feature space enrichment properly balanced with feature selection functionality can achieve performance comparable to deep learning approaches. In summary, differential geometry can substantially improve the outcome of machine learning since it can enrich the underlying feature space with new geometrical invariant objects.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-01-06
    Description: Single molecule fluorescence tracking provides information at nanometer-scale and millisecond-temporal resolution about the dynamics and interaction of individual molecules in a biological environment. While the dynamic behavior of isolated molecules can be characterized well, the quantitative insight is more limited when interactions between two indistinguishable molecules occur. We address this aspect by developing a theoretical foundation for a spectroscopy of interaction times, i.e., the inference of interaction from imaging data. A non-trivial crossover between a power law to an exponential behavior of the distribution of the interaction times is highlighted, together with the dependence of the exponential term upon the microscopic reaction affinity. Our approach is validated with simulated and experimental datasets.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-01-06
    Description: We discuss the properties of the distributions of energies of minima obtained by gradient descent in complex energy landscapes. We find strikingly similar phenomenology across several prototypical models. We particularly focus on the distribution of energies of minima in the analytically well-understood p-spin-interaction spin-glass model. We numerically find non-Gaussian distributions that resemble the Tracy-Widom distributions often found in problems of random correlated variables, and nontrivial finite-size scaling. Based on this, we propose a picture of gradient-descent dynamics that highlights the importance of a first-passage process in the eigenvalues of the Hessian. This picture provides a concrete link to problems in which the Tracy-Widom distribution is established. Aspects of this first-passage view of gradient-descent dynamics are generic for nonconvex complex landscapes, rationalizing the commonality that we find across models.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-01-06
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-01-03
    Description: Several learning problems involve solving min-max problems, e.g., empirical distributional robust learning [Namkoong and Duchi, 2016, Curi et al., 2020] or learning with non-standard aggregated losses [Shalev- Shwartz and Wexler, 2016, Fan et al., 2017]. More specifically, these problems are convex-linear problems where the minimization is carried out over the model parameters w ∈ W and the maximization over the empirical distribution p ∈ K of the training set indexes, where K is the simplex or a subset of it. To design efficient methods, we let an online learning algorithm play against a (combinatorial) bandit algorithm. We argue that the efficiency of such approaches critically depends on the structure of K and propose two properties of K that facilitate designing efficient algorithms. We focus on a specific family of sets Sn,k encompassing various learning applications and provide high-probability convergence guarantees to the minimax values.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-01-03
    Description: The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-01-17
    Description: In commodity transport networks such as natural gas, hydrogen and water networks, flows arise from nonlinear potential differences between the nodes, which can be represented by so-called "potential-driven" network models. When operators of these networks face increasing demand or the need to handle more diverse transport situations, they regularly seek to expand the capacity of their network by building new pipelines parallel to existing ones ("looping"). The paper introduces a new mixed-integer non-linear programming (MINLP) model and a new non-linear programming (NLP) model and compares these with existing models for the looping problem and related problems in the literature, both theoretically and experimentally. On this basis, we give recommendations about the circumstances under which a certain model should be used. In particular, it turns out that one of our novel models outperforms the existing models. Moreover, the paper is the first to include the practically relevant option that a particular pipeline may be looped several times.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-02-06
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-02-06
    Description: We consider linear parabolic equations on a random non-cylindrical domain. Utilizing the domain mapping method, we write the problem as a partial differential equation with random coefficients on a cylindrical deterministic domain. Exploiting the deterministic results concerning equations on non-cylindrical domains, we state the necessary assumptions about the velocity filed and in addition, about the flow transformation that this field generates. In this paper we consider both cases, the uniformly bounded with respect to the sample and log-normal type transformation. In addition, we give an explicit example of a log-normal type transformation and prove that it does not satisfy the uniformly bounded condition. We define a general framework for considering linear parabolic problems on random non-cylindrical domains. As the first example, we consider the heat equation on a random tube domain and prove its well-posedness. Moreover, as the other example we consider the parabolic Stokes equation which illustrates the case when it is not enough just to study the plain-back transformation of the function, but instead to consider for example the Piola type transformation, in order to keep the divergence free property.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2023-02-06
    Description: This article considers non-stationary incompressible linear fluid equations in a moving domain. We demonstrate the existence and uniqueness of an appropriate weak formulation of the problem by making use of the theory of time-dependent Bochner spaces. It is not possible to directly apply established evolving Hilbert space theory due to the incompressibility constraint. After we have established the well-posedness, we derive and analyse a time discretisation of the system.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-02-06
    Description: We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-02-06
    Description: We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-02-09
    Description: Aims. Detection and quantification of myocardial scars are helpful both for diagnosis of heart diseases and for building personalized simulation models. Scar tissue is generally charac­terized by a different conduction of electrical excitation. We aim at estimating conductivity-related parameters from endocardial mapping data, in particular the conductivity tensor. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. Therefore, we aim at accelerating the estimation using a multilevel method combining electrophysiology models of different complexity, namely the mono­domain and the eikonal model. Methods. Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the mono­domain model and regularization, leading to a constrained optimization problem. We formulate this optimization problem, including the modeling of scar tissue and different regularizations, and design an efficient iterative solver. We consider monodomain grid hierarchies and monodomain-eikonal model hierarchies in a recursive multilevel trust-region method. Results. From several numerical examples, both the efficiency of the method and the estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be just sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. Conclusion. In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more accurate but more expensive monodomain model for this purpose. Still, eikonal models can be utilized to accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-03-27
    Description: This thesis examines how taking into account surface to surface radiation impacts the cooling process in general. We formulate the non local bound- ary condition after introducing the general setting for the cooling model. In section 3, the mathematical description of the radiative heat transfer is dis- cussed. We cover the implementation of the radiative matrix in section 4, which is followed by a brief explanation of the radiative matrix’s structure and several techniques to dealing with the accompanying challenges. We investigate the importance of radiative heat transport by applying the given approach to a two-dimensional geometry and computing the ensuing cooling curves. We compare the findings of our computation to those ac- quired from experiment conducted and find that they are extremely similar. There is a considerable difference (of about 35%) in the time of cooling of the surface where there is a possibility of influence of radiation from the second surface to that of the surface with no influence at all. Although it is possible to infer that heat convection plays a role in the total result, this has yet to be proved. However, one can clearly see the significance of the surface to surface radiative heat transfer on these parts confirming the research question posed at the begining. The effect of the surface to surface radiative heat transfer has an influence on the resulting cooling time and should be considered in the model.
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-03-20
    Description: The generation of strong linear inequalities for QCQPs has been recently tackled by a number of authors using the intersection cut paradigm - a highly studied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of maximal quadratic-free sets. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for quick cut-computations by simply plugging-in parameters associated to an arbitrary quadratic inequality being violated by a vertex of an LP relaxation. Additionally, we implement a cut-strengthening procedure that dates back to Glover and evaluate these techniques with extensive computational experiments.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...