Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 4 (1992), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Glial cells, acutely isolated or in tissue culture, have previously been shown to express a variety of voltage-gated channels. To resolve the question whether such channels are also expressed by glial cells in their normal cellular environment, we have applied the patch-clamp technique to study glial cells in hippocampal slices of 10–12-day-old mice. Based on the membrane current pattern, we distinguished four glial cell types. One was characterized by passive, symmetrical K+ currents activated in depolarizing and hyperpolarizing directions. A second population showed a similar current pattern, but with a marked decay of the current during the 50-ms voltage jumps. In a third population, the decaying passive currents were superimposed with a delayed rectifier outward current and, in some cases, with a slow inward current activated by depolarization. The fourth population expressed delayed rectifying outward currents, an inward rectifier K+ current and fast inward currents activated by depolarization. To unequivocally identify the glial cells we combined electrophysiological and ultrastructural characterizations. Therefore, cells were filled with the fluorescent dye lucifer yellow during characterization of their membrane currents, the fluorescence of the dye was used to convert diaminobenzidine to an electron-dense material, and subsequently slices were inspected in the electron microscope. Recordings were obtained from cells in the stratum radiatum and were identified as glial by their size, the characteristic chromatin distribution, and the lack of synaptic membrane specializations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous studies have suggested that target-derived nerve growth factor (NGF) is essential for the survival of cholinergic basal forebrain neurons. Thus, axotomy of septohippocampal neurons in adult rats resulting in the withdrawal of target-derived NGF caused a dramatic loss of choline acetyltransferase (ChAT)-immunoreactive neurons in the medial septum-diagonal band complex. We have recently shown that this loss of immunolabelled neurons does not indicate cell death, since many septohippocampal cholinergic neurons recover their immunoreactivity for ChAT after a long survival time despite disconnection from target-derived neurotrophins. One possibility would be that these surviving ChAT-immunoreactive neurons have gained access to other, probably local, NGF sources. Here we provide evidence that the recovery of ChAT immunoreactivity after axotomy is not accompanied by a similar recovery of NGF receptor expression in these neurons. In situ hybridization for p75NTR mRNA and trkA mRNA 6 months after bilateral fimbria-fornix transection revealed a substantial loss of labelled cells. In addition, there was a persisting loss of p75NTR-immunoreactive and NGF-immunoreactive medial septal neurons. Cholinergic neurons in controls did not express NGF mRNA, but were heavily immunostained for NGF protein due to receptor-mediated uptake. These data suggest that at least some cholinergic septohippocampal neurons re-express ChAT either independently of NGF or with a reduced need for NGF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0568
    Keywords: Phaseolus vulgaris-leucoagglutinin ; Hippocampus ; Septum ; Entorhinal cortex ; Limbic system ; Fimbria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The fimbria is a major route for afferent and efferent fibers of the hippocampal formation. However, little is known about the intrinsic organization of the fimbria-fornix complex. In this study, the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) was used to analyze the ultrastructure and topography of identified fiber tracts within the fimbria-fornix. Septo-hippocampal fibers are loosely distributed throughout the fimbria-fornix. Commissural fibers cross the midline in the ventral hippocampal commissure and form a tight fiber bundle in the fimbria. Crossed entorhino-hippocampal fibers cross the midline in the ventral hippocampal commissure rostral to the commissural fiber bundle, and crossed entorhino-entorhinal fibers pass through the dorsal hippocampal commissure. This suggests a topographical organization of fiber tracts within the fimbria-fornix that reflects the laminar organization of the hippocampal target structure: fibers of the diffusely terminating septohippocampal projection are loosely distributed throughout the fimbria-fornix, while those projections that are known to terminate in specific laminae of the hippocampal formation (commissural projection, crossed entorhino-hippocampal projection) form fiber bundles within the fimbria and the ventral hippocampal commissure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Key words Fascia dentata ; Mossy cells ; Interneurons ; Lucifer yellow ; Phaseolus vulgaris leucoagglutinin ; Septohippocampal projection ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Mossy cells in the hilus of the rat dentate gyrus are the main cells of origin of the dentate commissural and associational projections. They project along the septotemporal axis of the dentate gyrus and may thus influence the hippocampal signal flow in a longitudinal direction. To analyze the septal innervation of these hilar neurons, anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHAL) was used in combination with intracellular labeling of mossy cells (Lucifer yellow). Anterogradely labeled septal fibers impinge on proximal and distal dendrites of hilar mossy cells but spare the cell body. In contrast, numerous aspiny hilar neurons, presumably GABAergic interneurons, receive a septal innervation on their somata and proximal primary dendrites. These data demonstrate that septal fibers show a specificity for the dendritic segments of hilar mossy cells. Since mossy cells project predominantly to adjacent hippocampal lamellae, the activity of adjacent portions of the dentate gyrus may be influenced by the septal input onto these neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 120 (1998), S. 399-402 
    ISSN: 1432-1106
    Keywords: Key words Neurotrophin ; Sprouting ; Dentate gyrus ; Mossy fibers ; Timm staining ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In human temporal lobe epilepsy, a loss of hilar neurons followed by the sprouting of recurrent mossy fiber collaterals and the reinnervation of free synaptic sites on granule cell dendrites are discussed as possible mechanisms underlying hippocampal hyperexcitability. Dentate granule cells have been shown to upregulate brain-derived neurotrophic factor (BDNF) as well as TrkB, the high-affinity receptor for BDNF, in response to limbic seizures. This raised the possibility that BDNF is an important factor in hippocampal mossy fiber sprouting. Here we have used slice cultures of hippocampus, in which mossy fibers sprout and form a supragranular plexus in response to granule cell deafferentation, and have compared cultures from early postnatal BDNF-deficient mice and wild-type mice. We demonstrate that there is sprouting of supragranular mossy fibers in cultured slices from both BDNF knock-out and wild-type mice. We conclude that BDNF is not an essential factor for mossy fiber sprouting. However, our data do not exclude a role for BDNF in mossy fiber sprouting in wild-type mice, as compensatory mechanisms might have become effective in the mutant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 41 (1981), S. 329-337 
    ISSN: 1432-1106
    Keywords: Caudate nucleus ; Golgi/EM ; Corticocaudate projection ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A combined Golgi/electron microscopic technique was used to investigate the fine structure and synaptology of Golgi-stained spiny neurons in the caudate nucleus of the cat. In order to study the termination sites of cortical afferents on Golgistained spiny neurons, cortical fibres were caused to degenerate by making extensive cortical lesions 3 days prior to fixation of the animals. When examined in the electron microscope, perikarya of labelled spiny neurons have a round nucleus, a few mitochondria and microtubules, and a poorly developed Golgi apparatus and rough endoplasmic reticulum. Only rarely are axo-somatic contacts seen. Labelled dendrites exhibit a moderate number of microtubules and sometimes elongated mitochondria. Numerous labelled spines are seen in the vicinity of their parent dendrites. They are contacted by smaller type I and type III boutons and larger type IV boutons (Hassler et al. 1978). Large boutons filled with clear round vesicles establish symmetric contacts with labelled dendritic shafts. Degenerating boutons of cortical afferents are seen in contact with spines and, more rarely, with dendritic shafts of Golgi-stained spiny neurons. All degenerating boutons synapsing with labelled structures are found some distance from the cell body. No contacts of degenerating cortical boutons with the soma or with stem dendrites of Golgi-stained spiny neurons are found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 41 (1981), S. 247-255 
    ISSN: 1432-1106
    Keywords: Hippocampal slice ; Ultrastructure ; Mossy fiber synapses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 0.2 to 0.4 mm thick slices of guinea pig hippocampus were studied morphologically after varying periods of incubation at 36 ° C in Krebs-Ringer solution. Prior to fixation, the slices were tested for the presence of synaptically driven discharges of CA 3 neurons following mossy fiber (mf) stimulation because tissue preservation was satisfactory only in slices in which electrical responses were obtained. The fine structure of the mf layer in slices was compared with the ultrastructure of this region in hippocampal tissue fixed by transcardial perfusion or immersion of the tissue in the fixative. In the central part of the slices many intact neuronal structures of the mf layer could be seen even after 4 h of incubation. In the outer parts of the slices, neurons were swollen and vacuolated. These alterations were not observed in hippocampal tissue fixed by transcardial perfusion or by immersion. In all parts of the slices dark neurons and processes were found. Since dark neurons were also numerous in tissue blocks immersed in the fixative but were rare in perfused material, these changes were obviously caused by damage to unfixed tissue and fixation by immersion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 286 (1996), S. 293-303 
    ISSN: 1432-0878
    Keywords: Key words: Phaseolus vulgaris leucoagglutinin ; Anterograde tracing ; Entorhinal cortex ; Crossed temporo-ammonic pathway ; Crossed temporo-dentate pathway ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Neurons of the entorhinal cortex project to the hippocampus proper and dentate gyrus. This projection is called the ”perforant pathway” because it perforates the subiculum; current usage applies this term to all entorhino-hippocampal fibers. However, entorhinal fibers also reach Ammon’s horn via the alveus (”alvear pathway”), an alternative route first described by Cajal. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) was used in order to analyze the contribution of this pathway to the temporo-ammonic projection. In the temporal portion of the rat hippocampus, most of the entorhinal fibers reach Ammon’s horn after perforating the subiculum (classical perforant pathway). At more septal levels, the number of entorhinal fibers that take the alvear pathway increases; in the septal portion of the hippocampal formation, most of the entorhinal fibers to hippocampal subfield CA1 reach this subfield via the alveus. These fibers make sharp right-angle turns in the alveus, perforate the pyramidal cell layer, and finally terminate in the stratum lacunosum-moleculare. The crossed temporo-ammonic fibers reach their termination area in the stratum lacunosum-moleculare of CA1 almost exclusively via the alveus. These data indicate that the alveus is a major route by which entorhinal fibers reach their targets in CA1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Oligodendrocytes in the rat hippocampusin situ and in organotypic slice cultures were studied by light and electron microscopic immunocytochemistry using the monoclonal Rip antibody. Our results confirm that this antibody exclusively stains oligodendrocytes, while astrocytes and neurons are not labelled. In the light microscope, immunopositive cells had the appearance of myelinating oligodendrocytes with their characteristic tubular processes. In the electron microscope, stained cells showed intimate contacts with myelin sheaths but not with the basal laminae of endothelial cells. Rip-positive oligodendrocytes were unevenly distributed in the adult rat hippocampal formation. In general, they were abundant in layers known to contain many afferent and efferent fibres. In the hippocampus proper, there was a particularly strong immunolabelling of stratum radiatum of field CA2. In the fascia dentata, the hilar region displayed a high cell density, especially in the vicinity of the granule cell layer. A similar distribution of immunopositive cells was found in young animals (15–18 days old); however, the density of labelled cells was lower, particularly in the hilus. Immunolabelled cells in slice cultures of hippocampus displayed the characteristics of myelinating oligodendrocytes. Moreover, they showed an organotypic distribution, although afferent and efferent fibre projections normally myelinated by these cells were absent under these conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 20 (1991), S. 915-928 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study describes non-granule cells in the fascia dentata of rhesus monkeys and baboons. Their cell bodies are located in the molecular layer and at the hilar border of the granular layer. They are called basket cells since their axons give rise to collaterals that branch in the close vicinity of the parent cell body and form symmetric synapses with dendrites and cell bodies of granule cells. These neurons are further classified with regard to the shape and location of their cell bodies and the orientation of their dendrites. Basket cells in the molecular layer are mainly bipolar with dendrites oriented perpendicular to the granular layer. These dendrites are densely innervated by presynaptic boutons forming asymmetric synapses. We have rarely observed molecular layer basket cells with dendrites traversing the granular layer and invading the hilus. We thus conclude that these cells are mainly activated by extrinsic afferents terminating in the molecular layer. Basket cells at the hilar border display pyramidal, fusiform or multipolar cell bodies that give rise to apical dendrites traversing the molecular layer and basal dendrites invading the hilar region. Large boutons establish asymmetric synapses with identified basal dendrites of these neurons. The dendrites of all types of basket cell are smooth, i.e. they had few or no spines. Many of them display varicosities. Cell counts in Cresyl Violet-stained sections revealed a ratio of basket cells to granule cells of 1:500. Essentially, the types of basket cell in the monkey fascia dentata are similar to those described previously for the rat. This contrasts sharply to our recent findings for pyramidal neurons and granule cells of the monkey hippocampus which showed an increased complexity and variability when compared with rodents. These data do not support the hypothesis that only local circuit neurons evolve in phylogeny.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...