Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 23 (1980), S. 1222-1226 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 4615-4620 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The competition between band gap and the 2.2 eV (yellow) luminescence of epitaxial GaN is studied for excitation densities ranging from 5×10−6 to 50 W/cm2. The ratio of the peak intensities of the band gap-to-yellow luminescence changes from 4:1 to 3000:1 as the excitation density is increased by 7 orders of magnitude. At room temperature, the band gap luminescence linewidth is 2.3kT, close to the theoretical minimum of 1.8kT. A model is developed describing the intensity of the two radiative transitions as a function of the excitation density. This model is based on bimolecular rate equations and takes into account shallow impurities, deep levels, and continuum states. The theoretically predicted dependences of the two different luminescence channels follow power laws with exponents of 1/2, 1 and 3/2. Thus the intensity of the yellow luminescence does not saturate at high excitation densities. These dependences are in excellent agreement with experimental results. The relevance of the results for optoelectronic GaN devices is discussed. It is shown that the peak intensity of the yellow luminescence line is negligibly small at typical injection currents of light-emitting diodes and lasers. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 686-693 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Properties of Ga2O3 thin films deposited by electron-beam evaporation from a high-purity single-crystal Gd3Ga5O12 source are reported. As-deposited Ga2O3 films are amorphous, stoichiometric, and homogeneous. Excellent uniformity in thickness and refractive index was obtained over a 2 in. wafer. The films maintain their integrity during annealing up to 800 and 1200 °C on GaAs and Si substrates, respectively. Optical properties including refractive index (n=1.84–1.88 at 980 nm wavelength) and band gap (4.4 eV) are close or identical, respectively, to Ga2O3 bulk properties. Reflectivities as low as 10−5 for Ga2O3/GaAs structures and a small absorption coefficient (≈100 cm−1 at 980 nm) were measured. Dielectric properties include a static dielectric constant between 9.9 and 10.2, which is identical to bulk Ga2O3, and electric breakdown fields up to 3.6 MV/cm. The Ga2O3/GaAs interface demonstrated a significantly higher photoluminescence intensity and thus a lower surface recombination velocity as compared to Al2O3/GaAs structures. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 7647-7661 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This article investigates steady-state nonequilibrium conditions in metal–oxide–semiconductor (MOS) capacitors. Steady-state nonequilibrium conditions are of significant interest due to the advent of wide-gap semiconductors in the arena of MOS (or metal–insulator–semiconductor) devices and due to the scaling of oxide thickness in Si technology. Two major classes of steady-state nonequilibrium conditions were studied both experimentally and theoretically: (i) steady-state deep depletion and (ii) steady-state low level optical generation. It is found that the identification and subsequent understanding of steady-state nonequilibrium conditions is of significant importance for correct interpretation of electrical measurements such as capacitance–voltage and conductance–voltage measurements. Basic implications of steady-state nonequilibrium conditions were derived for both MOS capacitors with low interfaces state density Dit and for oxide semiconductor interfaces with a pinned Fermi level. Further, a photoluminescence power spectroscopy technique is investigated as a complementary tool for direct-gap semiconductors to study Dit and to monitor the interface quality during device fabrication. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 6448-6451 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We propose and demonstrate a novel approach to the coating of semiconductor laser facets. In this approach, processed semiconductor lasers are cleaved in a high-vacuum system immediately followed by coating of the vacuum-exposed facet with a very thin Si layer (≤100 A(ring)) and a large band gap dielectric (Al2O3) layer. The Si layer is sufficiently thin to avoid the formation of quantized bound states in the Si. GaAs coated with thin Si and Al2O3 have a higher luminescence yield and a lower surface recombination velocity than bare GaAs surfaces as well as GaAs surfaces coated with Al2O3 only. A surface recombination velocity of 3×104 cm/s has been obtained using a modified dead layer model for the Si/Al2O3 sample. It is also shown that lasers which are cleaved in vacuum and subsequently coated with Si and Al2O3 have improved properties including an increased threshold for catastrophic optical damage. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 66 (1989), S. 5629-5631 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We describe vertical cavity surface emitting lasers of GaAs active regions (0.7 μm thick) emitting at 0.85 μm and of In0.1Ga0.9As-GaAs active regions emitting at 0.90 μm. The vertical cavity is formed using an AlxGa1−xAs-AlAs quarter-wave stack as the n-type mirror and the metal Ag as the p-type mirror. The Ag mirror has potential for reduced series resistance, reduced thermal resistance, and more simplified device processing over other mirror structures for vertical cavity laser diodes. Current thresholds for pulsed room-temperature operation as low as 16 kA/cm2 for the GaAs and 51 kA/cm2 for the In0.1Ga0.9As-GaAs devices have been measured.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 4191-4195 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: GaN/InGaN light emitting diodes (LEDs) grown on sapphire substrates have current transport along the lateral direction due to the insulating nature of the substrate. The finite resistance of the n-type GaN buffer layer causes the pn junction current to be nonuniform and "crowd" near the edge of the contact. The current-crowding effect is analyzed both theoretically and experimentally for p-side-up mesa structure GaN/InGaN LEDs. The calculation yields an exponential decay of the current distribution under the p-type contact with a characteristic current spreading length, Ls. It is shown that GaN/InGaN LEDs with high p-type contact resistance and p-type confinement layer resistivity have a relatively uniform current distribution. However, as the p-type GaN conductivity and p-type ohmic contact conductivity is improved, significant current crowding near the contact edge will occur. The current crowding effect is analyzed experimentally in GaN/InGaN LEDs emitting in the blue spectral range. Experimental results show the light intensity decreasing with distance from the contact edge. A current spreading length of Ls=525 μm is found, in good agreement with theory. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 3324-3327 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report electrical measurements on structures generated by δ doping the AlGaAs barriers of a GaAs quantum well. These structures are made unique by quantum size effects that occur both in the δ-doped barrier and in the GaAs well. Both the Hall-effect and capacitance-voltage measurements reveal that high-density, 4×1012 cm−2, two-dimensional electron gas forms in the well along with good mobility. We fabricate field-effect transistors with this structure to obtain transconductances of 300 mS/mm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 1578-1580 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using triethylgallium and arsine, high-quality GaAs can be grown at a relatively low substrate temperature of 500 °C by chemical beam epitaxy. Such a low temperature has the advantage of a negligible Si diffusion effect. Capacitance-voltage (C-V) measurements of the Si δ-doped GaAs show extremely narrow profile widths of 22 A(ring) at 300 K and 18 A(ring) at 77 K, indicating a very high degree of Si spatial localization has been achieved. The subsequent annealing experiments reveal that significant Si segregation and diffusion exist at a high growth temperature of ∼600 °C, usually employed in conventional molecular-beam epitaxy. The C-V widths of the annealed δ-doped structures also provide an excellent measure to determine the Si diffusion constant in GaAs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 2030-2038 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experimental and theoretical results of Mg-doped superlattices consisting of uniformly doped AlxGa1−xN, and GaN layers are presented. Acceptor activation energies of 70 and 58 meV are obtained for superlattice structures with an Al mole fraction of x=0.10 and 0.20 in the barrier layers, respectively. These energies are significantly lower than the activation energy measured for Mg-doped bulk GaN. At room temperature, the doped superlattices have free-hole concentrations of 2×1018 cm−3 and 4×1018 cm−3 for x=0.10 and 0.20, respectively. The increase in hole concentration with Al content of the superlattice is consistent with theory. The room temperature conductivity measured for the superlattice structures is 0.27 S/cm and 0.64 S/cm for an Al mole fraction of x=0.10 and 0.20, respectively. X-ray rocking curve data indicate excellent structural properties of the superlattices. We discuss the origin of the enhanced doping, including the role of the superlattice and piezoelectric effects. The transport properties of the superlattice normal and parallel to the superlattice planes are analyzed. In particular, the transition from a nonuniform to a uniform current distribution (current crowding) occurring in the vicinity of contacts is presented. This analysis provides a transition length of a few microns required to obtain a uniform current distribution within the superlattice structure. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...