Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Toroidally localized ballooning modes have been found as precursors to high β disruptions in many regimes on the Tokamak Fusion Test Reactor (TFTR) [D. Meade et al., Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. I, pp. 9–24]. Lower frequency, global magnetohydrodynamic (MHD) activity, typically an ideal n=1 kink mode, causes the toroidal localization. Larger-amplitude n=1 modes result in stronger toroidal localization of the ballooning modes. The modes are typically localized to a region spanning about 90°–120° in the toroidal direction. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The confinement and heating of supershot plasmas are significantly enhanced with tritium beam injection relative to deuterium injection in the Tokamak Fusion Test Reactor [Plasma Phys. Controlled Fusion 26, 11 (1984)]. The global energy confinement and local thermal transport are analyzed for deuterium and tritium fueled plasmas to quantify their dependence on the average mass of the hydrogenic ions. Radial profiles of the deuterium and tritium densities are determined from the D–T fusion neutron emission profile. The inferred scalings with average isotopic mass are quite strong, with τE∝〈A〉0.85±0.20, τEthermal∝〈A〉0.89±0.20, χitot∝〈A〉−2.6±0.5, and De∝〈A〉−1.4±0.2 at fixed Pinj. For fixed local plasma parameters χitot∝〈A〉−1.8±0.4 is obtained. The quoted 2σ uncertainties include contributions from both diagnostic errors and shot irreproducibility, and are conservatively constructed to attribute the entire scatter in the regressed parameters to uncertainties in the exponent on plasma mass. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High-resolution electron cyclotron emission (ECE) image reconstruction has been used to observe (m,n)=(2,1) and (3, 2) island structures on Tokamak Fusion Test Reactor [Plasma Phys. Controlled. Fusion 33, 1509 (1991)], where m and n are the poloidal and the toroidal mode number, respectively. The observed island structure is compared with other diagnostics, such as soft x-ray tomography and magnetic measurements. A cold elliptic island is observed after lithium pellet injection. Evidence for the enhancement of the heat transfer due to the island is observed. A relaxation phenomenon due to the m=2 mode is newly observed in Ohmic plasmas. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A band of high-frequency modes in the range 50–150 kHz with intermediate toroidal mode numbers 4〈n〈10 are commonly observed in the core of supershot plasmas on TFTR [R. Hawryluk, Plasma Phys. Controlled Fusion 33, 1509 (1991)]. Two distinct varieties of magnetohydrodynamic (MHD) modes are identified, corresponding to a flute-like mode predominantly appearing around the q=1 surface and an outward ballooning mode for q(approximately-greater-than)1. The flute-like modes have nearly equal amplitude on the high-field and low-field side of the magnetic axis, and are mostly observed in moderate performance supershot plasmas with τE〈2τL, while the ballooning-like modes have enhanced amplitude on the low-field side of the magnetic axis and tend to appear in higher performance supershot plasmas with τE(approximately-greater-than)2τL, where τL is the equivalent L-mode confinement time. Both modes appear to propagate in the ion diamagnetic drift direction and are highly localized with radial widths Δr∼5–10 cm, fluctuation levels ñ/n, T˜e/Te〈0.01, and radial displacements ξr∼0.1 cm. Unlike the toroidally localized high-n activity observed just prior to major and minor disruptions on TFTR [E. D. Fredrickson et al., Proceedings of the 15th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, Spain (International Atomic Energy Agency, Vienna, 1995), No. IAEA-CN-60/A-2-II-5], these modes are typically more benign and may be indicative of MHD activity excited by resonant circulating beam ions. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Wall conditioning in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] by injection of lithium pellets into the plasma has resulted in large improvements in deuterium–tritium fusion power production (up to 10.7 MW), the Lawson triple product (up to 1021 m−3 s keV), and energy confinement time (up to 330 ms). The maximum plasma current for access to high-performance supershots has been increased from 1.9 to 2.7 MA, leading to stable operation at plasma stored energy values greater than 5 MJ. The amount of lithium on the limiter and the effectiveness of its action are maximized through (1) distributing the Li over the limiter surface by injection of four Li pellets into Ohmic plasmas of increasing major and minor radius, and (2) injection of four Li pellets into the Ohmic phase of supershot discharges before neutral-beam heating is begun. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Injection of both Li and C pellets into TFTR discharges has provided a variety of almost instantaneous changes to the normal equilibrium profiles. The profile measurements of visible bremsstrahlung intensity, electron density, and temperature were used to deduce Zeff profiles versus time. The evolution Zeff is examined in L mode and supershot cases. A comparison is made to the soft x-ray profile behavior for these same conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The first wall of TFTR is covered in large part (23%) by an inner-wall bumper limiter which is the primary power handling structure in TFTR. The limiter is comprised of more than 2000 tiles, and is instrumented with a large number ((approximately-greater-than)100) of thermocouples in a two-dimensional (2D) array, primarily for protection of the wall. While only about 5% of the tiles are monitored, this thermocouple system is nevertheless capable of mapping details in the nonaxisymmetric, as well as symmetric, heat load patterns encountered under different conditions. In particular, helical heating patterns are observed in discharges which have locked modes. The helical patterns clearly match the expected trajectories based on the m/n mode numbers obtained from Mirnov coils (m/n=2/1 and 4/1), so that the thermocouple system can and was used to identify the existence and mode number of a locked mode. While TFTR discharges rarely suffer from locked modes, locked modes always alter the heating pattern. The locked modes are found to very significantly redistribute the heat load for both ohmic and NBI heated discharges. Locked modes can make what were the coldest areas into the hottest areas, and vice versa. Locked modes also can alter the heat pattern resulting from the frequent disruptions which occur as a result of a locked mode.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Circular limiter H modes with centrally peaked density profiles have been obtained on TFTR. Diagnostics used to study these unique plasmas include arrays of Dα and C ii detectors, bolometers, and Mirnov coils; x-ray imaging, charge exchange recombination spectroscopy, ECE, microwave scattering systems, and a multichannel infrared interferometer. These diagnostics have special features which allow time and space-resolved measurements during the H-mode transition and during ELMs. Microwave scattering during the H phase shows a feature in the scattered spectrum which is consistent with a poloidal rotation in the electron diamagnetic drift direction. Mirnov coil data digitized at 2 MHz show an increase in high-frequency magnetic fluctuations (60–200 kHz) during an ELM, while ECE data show 20–30 μs intense emission spikes in the outer 15–20 cm of the plasma edge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1647-1655 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Full sawtooth crashes in high temperature plasmas have been investigated on the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 33, 1509 (1991)]. A strong asymmetry in the direction of major radius, a feature of the ballooning mode, and a remaining m=1 region after the crash have been observed with electron cyclotron emission image reconstructions. The TFTR data is not consistent with two-dimensional (2-D) models; it rather suggests a three-dimensional (3-D) localized reconnection arising on the bad curvature side. This process explains the phenomenon of fast heat transfer which keeps the condition q0〈1.©1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of isotope on confinement in high-recycling, L-mode plasmas is studied on the Tokamak Fusion Test Reactor (TFTR) [see D. M. Meade, J. Fusion Energy 7, 107 (1988)] by comparing hydrogen and deuterium plasmas with the same magnetic field and similar electron densities and heating power, with both Ohmic and deuterium-neutral-beam heating. Following a long operational period in deuterium, nominally hydrogen plasmas were created through hydrogen glow discharge and hydrogen gas puffing in Ohmic plasmas, which saturated the exposed limiter surface with hydrogen and raised the H/(H+D) ratio from 10±3% to 65±5%. Ohmic deuterium discharges obtained higher stored energy and lower loop voltage than hydrogen discharges with similar limiter conditions. Neutral-beam power scans were conducted in L-mode plasmas at minor radii of 50 and 80 cm, with plasma currents of 0.7 and 1.4 MA. To minimize transport differences from the beam deposition profile and beam heating, deuterium neutral beams were used to heat the plasmas of both isotopes. Total stored energy increased approximately 20% from nominally hydrogen plasmas to deuterium plasmas during auxiliary heating. Of this increase about half can be attributed to purely classical differences in the energy content of unthermalized beam ions. Kinetic measurements indicate a consistent but small increase in central electron temperature and total stored electron energy in deuterium relative to hydrogen plasmas, but no change in total ion stored energy. No significant differences in particle transport, momentum transport, and sawtooth behavior are observed. Overall, only a small improvement (∼10%) in global energy confinement time of the thermal plasma is seen between operation in hydrogen and deuterium. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...