Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 17-39 
    ISSN: 1432-1106
    Keywords: Parallel fibres ; Purkinje cells ; Cerebellum ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. When electrical stimuli were applied to the surface of a cerebellar folium by a local electrode (LOC), there was a propagated potential wave along the folium with a triphasic (positive-negative-positive) configuration. 2. Investigations by microelectrode recording established that this wave is produced by impulses propagating for at least 3 mm and at about 0.3 m/sec along a narrow superficial band or “beam” of parallel fibres. As expected from this interpretation, there was an absolutely refractory period of less than 1 msec and impulse annihilation by collision. 3. Complications occurred from the potential wave forms resulting from the excitation of mossy fibres by spreading of the applied LOC stimulus. These complications have been eliminated by chronically deafferenting the cerebellum. 4. When recording within the beam of excited parallel fibres there was a slow negative wave of about 20 msec duration, and deep and lateral thereto, there was a slow positive wave of approximately the same time course. 5. These potential fields were expressed in serial profile plots and in potential contour diagrams and shown to be explicable by the excitatory and inhibitory synaptic action on Purkinje cells: excitatory depolarizing synapses of parallel fibre impulses on the dendrites; and hyperpolarizing inhibitory synapses of stellate and basket cells respectively on the dendrites and somata. The active excitatory synapses would be strictly on the parallel fibre beam and the inhibitory concentrated deep and lateral thereto, which is in conformity with the axonal distributions of those basket and stellate cells that would be excited by the parallel fibre beam. 6. Complex problems were involved in interpretation of slow potentials produced by a second LOC stimulus at brief stimulus intervals and up to 50 msec: there was a potentiation of the slow negative wave, and often depression of the positive wave deep and lateral to the excited beam of parallel fibres. 7. Often the LOC stimulus evoked impulse discharge from the Purkinje cells, these discharges being inhibited by a preceding LOC stimulus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 82-101 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Mossy fibre input ; olgi cell inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The glomerulus in the cerebellar granular layer is composed of the three elements; the mossy fibre terminal, the granule cell dendrites and the Golgi cell axons. The afferent input to the cerebellar cortex through the glomerulus, the mossy fibre-granule cell relay (M.G.R.), and its inhibitory control by the Golgi cells were studied by recording, a) extracellular field potentials in the granular and molecular layers, b) unitary spikes of granule cells, and c) intracellular postsynaptic potentials in Purkinje cells. 2. Mossy fibres were activated by juxta-fastigial, transfolial, lateral cuneate nucleus and radial nerve stimulation. Stimulation of an adjacent folium (transfolial stimulation) could excite branches of mossy fibres under the stimulating electrode which supply other branches also to the folium under the recording electrode. This technique was utilized to distinguish the response due to mossy fibre activation from those due to the climbing fibre and Purkinje cell axons. 3. These stimulations resulted in, through the M.G.R., a powerful activation of granule cells whose axons (parallel fibres) excited in turn the Purkinje cells and the inhibitory interneurones, including the Golgi cells, in the molecular layer. 4. Field potentials and unitary spikes due to granule cell activity elicited by the stimulation of mossy fibres were markedly depressed for hundreds of milliseconds after the direct stimulation of parallel fibres (LOC stimulation). The postsynaptic potential in Purkinje cells evoked by mossy fibre activation was also depressed by the conditioning LOC stimulation in the same manner. The “spontaneous” background activities recorded from granule cells as unitary spikes and from Purkinje cells as inhibitory synaptic noise were silenced for hundreds of milliseconds after the LOC stimulation. 5. These depressions indicate that the parallel fibre activation evokes an inhibitory action upon M.G.R. On anatomical grounds this inhibition can be mediated only by the Golgi cell, and it is postulated that the inhibitory action is postsynaptic upon the dendrites of granule cells. 6. It is concluded that the Golgi cell inhibition regulates the mossy fibre input to the cerebellar cortex at the M.G.R. by a form of negative feed-back.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 161-183 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Purkinje cells ; Intracellular recording ; Postsynaptic potentials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Intracellular recording from Purkinje cells has been employed in investigating the excitatory and inhibitory synaptic action that is exerted on these cells by the mossy fibre input into the cerebellum. 2. These synaptic actions are evoked not directly by the mossy fibres, but probably always through granule cells and their axons, the parallel fibres. The intracellular records conform with the anatomical evidence that the parallel fibres directly exert a powerful synaptic excitatory action on Purkinje cells, and that the inhibitory pathway occurs via an inhibitory interneurone — a basket cell or a stellate cell. Direct stimulation of parallel fibres gives intracellular potentials closely resembling those produced by deep stimulation of mossy fibres. 3. As would be expected, direct stimulation of parallel fibres produces an EPSP with a latency 1 to 2 msec briefer than the IPSP. The IPSP has a duration usually in excess of 100 msec. The EPSP appears to be briefer, though its superposition on the IPSP greatly reduces its apparent duration. Neutralization of the IPSP by appropriate membrane polarization or by intracellular chloride injection reveals an EPSP duration of up to 50 msec. 4. The IPSP is typically affected by polarizing currents; reduced and even inverted by hyperpolarizing currents, and increased by depolarizing currents. The IPSP is converted to a depolarizing response by excess of intracellular chloride. It must therefore be generated by an increased ionic permeability of the inhibitory subsynaptic membrane, chloride ions being importantly concerned. 5. Often small irregular IPSPs can be observed occurring spontaneously, and they react to polarizing currents and to chloride injections in a manner identical to the evoked IPSPs. It is concluded that they are generated by the spontaneous discharges of basket cells. 6. A brief account is given of various spontaneous rhythmic responses of impaled Purkinje cells, and of the effect of synaptic inhibitory action upon them. 7. There is a general discussion of these findings in relation to the various neural pathways and neural mechanisms that have been postulated in the light of the preceding investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-1106
    Keywords: Reticular formation ; Thalamo-cortical recruiting system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. In lightly nembutalized cats, effects of high frequency (60–100/sec) repetitive stimulation of the midbrain reticular formation (RF) were tested upon the thalamo-cortical (T-C) neurones which project from the anterior ventral (VA) nucleus of the thalamus and its vicinities to the parietal association cortex and convey impulses responsible for cortical recruiting and spindling-like responses. 2. Tonic maintained or rhythmic grouped firings of the T-C neurones recorded as extracellular units with microelectrode in the thalamus were in the majority suppressed by high frequency RF stimulation during and often for a short time after the stimulation, and they showed later tonic discharges for many seconds or minutes. Intracellular recording from the T-C neurones revealed hyperpolarizing potential changes corresponding to the suppression on high frequency RF stimulation. Field potential analysis in the VA nucleus indicated that the hyperpolarization is ascribed at least in part to IPSPs elicited in the T-C neurones. Responses in some other types of thalamic neurones to the RF stimulation were exemplified to be compared and related with those of the T-C neurones. 3. Desynchronization of the parietal electrocorticogram coincided with the suppression of the T-C neurones and lasted for the time of the later tonic discharges, which contrasted with the rhythmic grouped discharges of the T-C neurones in association with recruiting and spindling-like responses of the cortex. Relations between the thalamo-cortical recruiting system and the ascending reticular activating system were discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 22 (1975), S. 87-96 
    ISSN: 1432-1106
    Keywords: Thalamus ; Cortex ; Recruiting response ; Spindling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The thalamic neurones sending their axons to the parietal association cortex (middle suprasylvian gyrus) and receiving monosynaptic excitation from the cerebellar (interpositus or lateral) nucleus were recorded with microelectrodes extracellularly and intracellularly around the anterior ventral (VA) nucleus of the thalamus in cats. Such thalamic neurones are known to carry exclusively the impulses responsible for superficial thalamo-cortical (T-C) responses in the parietal cortex, being called superficial T-C neurones (see Sasaki et al., 1972a, b). 2. Repetitive (6–9/sec) stimulation of the centrum medianum-parafascicular complex (CM) or the intralaminar nuclei (IL) of the thalamus elicited grouped spike discharges of the neurone in synchronization with the recruiting responses in the parietal cortex. The grouped discharges usually preceded the respective cortical responses by several milliseconds. Numbers of the spikes in the grouped discharges increased and decreased as the recruiting responses waxed and waned on the repetitive stimulation. 3. The superficial T-C neurones also showed similar grouped discharges in synchronization with spindling-like, surface-negative cortical responses which occurred spontaneously or were evoked by single thalamic stimulation. 4. It was concluded that the superficial T-C neurones can convey impulses for recruiting responses and spindling-like responses from the thalamus directly to the cerebral cortex. They are supposed to constitute the final T-C pathway of the neuronal circuits of the recruiting system, i.e., non-specific T-C projection system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-1106
    Keywords: Association cortex ; Cerebellar cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Responses evoked in the cerebellar cortex by stimulation of the parietal association cortex (rostral portions of the middle suprasylvian gyrus) were recorded and analysed in cats, and were compared with those by stimulation of the motor cortex (anterior sigmoid gyrus). 2. The parietal stimulation elicited early mossy fibre and late climbing fibre responses in the cerebellar cortex. The mossy fibre responses appeared at a latency of 2.0–2.5 msec and predominantly in the lateral (hemispherical) part of the contralateral cerebellum (mainly crus I, crus II and paramedian lobules). Cutting of the inferior cerebellar peduncle produced little or no influence upon the mossy fibre responses, which suggests that the mossy fibre responses are mediated chiefly by the pontine nuclei. 3. The climbing fibre responses were recorded at a latency of 17–19 msec and markedly in the contralateral intermediate and medial parts of IV–VI lobules. The responses were easily suppressed by anaesthesia and depended on the conditions of experimental animals. The unstable appearance of the responses and their longer latencies than those of the climbing fibre responses due to stimulation of the motor cortex imply indirect pathways from the parietal association cortex to the inferior olive. 4. The predominant projection of the parietal-induced mossy fibre responses to the lateral part of the cerebellum was compared with the mossy fibre projection from the motor cortex and was discussed as an important component in the cerebrocerebellar loops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 37 (1979), S. 193-198 
    ISSN: 1432-1106
    Keywords: Cerebello-cerebral projection ; Dentate nucleus ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Stimulation of the cerebellar dentate nucleus in monkeys elicited responses in the frontal association cortex (area 9) on the contralateral side to the stimulation, in addition to those in the motor (area 4) and premotor (area 6) cortices which were reported previously. The responses in the frontal association cortex were characterized by surface positive-deep negative field potentials in the cortex. They contrasted with surface negative-deep positive potentials in the motor and premotor cortices on the same dentate nucleus stimulation. In the rostral part of the premotor cortex (area 6) on the border of area 9, both types of responses were induced and admixed. The relay nucleus of the thalamus was suggested for the dentate-induced responses in the frontal association cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-1106
    Keywords: Pallidum ; Cerebellar nuclei ; Thalamus ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Thalamic projections of the pallidum and the deep cerebellar nuclei were studied by unitary recordings as well as field potential analysis in the thalamus of squirrel monkeys (Saimiri sciureus) under sodium pentobarbital anesthesia. Stimulation of the pallidum produced a positive field potential preceded by incoming afferent fiber volleys in the thalamus. Spontaneous discharges of thalamic neurons were suppressed during this positive potential, and intracellular recordings from the thalamic neurons revealed that the time course of this field potential corresponded to that of the hyperpolarizing potential. The hyperpolarization was presumed to be a monosynaptic inhibitory postsynaptic potential by the short synaptic delay (about 0.5–0.7 ms) and responsiveness to high frequency stimulation (over 150 Hz). The positive field potential on stimulation of the external pallidal segment was distributed in L.po (VA) and the reticular thalamic nucleus around L.po, whereas that on stimulation of the internal segment was in V.o.a (the anterior basal part of VL) and in Z.o (upper part of VL). The projection of the external segment appeared to be less dense than that of the internal segment. The projection of deep cerebellar nuclei was situated in V.o.a, V.o.p (posterior part of basal part of VL), V.o.i (VLm), the intralaminar nucleus (CL), and some part of V. im (the rostral part of VPLo). Projections of the interpositus and dentate nuclei were distributed in a more anterior part than those of the fastigial nucleus. A certain topographical arrangement of the projections of these three nuclei was found in V.o.p, V.o.i and V.im. No significant overlap was detected between projections of the pallidum and the deep cerebellar nuclei within the thalamus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 46 (1982), S. 29-36 
    ISSN: 1432-1106
    Keywords: Premovement cortical potential ; Visually initiated movement ; Cerebellum ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Cortical field potentials preceding hand movements initiated by a visual stimulus were recorded with chronically implanted electrodes in premotor, motor and somatosensory cortices of monkeys, and the influences of cerebellar hemispherectomy on cortical potentials as well as reaction time of movements were examined. As reported previously, early surface-positive, depth-negative (2.5–3 mm depth from the cortical surface) premovement potentials emerged at about 40 ms latency after onset of the light stimulus bilaterally in premotor and forelimb motor areas. Early potentials in the forelimb motor area contralateral to the moving hand were followed at about 120 ms latency by surface-negative, depth-positive late premovement potentials which are considered to be mainly composed of superficial thalamo-cortical (T-C) responses. Unilateral hemispherectomy of the cerebellum contralateral to the motor area immediately eliminated the surface-negative, depth-positive potentials. Reaction time from onset of the light stimulus to the hand movement was prolonged by 90–250 ms after cerebellar hemispherectomy. If the dentate and interpositus nuclei were also lesioned, disappearance of the late potentials and delay of the movement continued for many months. However, if the interpositus was spared, there was earlier recovery of reaction time with simultaneous reappearance of the late premovement potentials in the motor cortex. The conclusion is drawn that the cerebellar hemisphere (neocerebellum) activates the motor cortex via superficial T-C projections and participates directly in the initiation of reaction movements in response to an external stimulus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 55 (1984), S. 26-32 
    ISSN: 1432-1106
    Keywords: Cortical field potential ; Visually initiated movement ; Motor learning ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A monkey was trained to lift a lever by wrist extension in response to a light stimulus. During the learning process of the task over several months, field potentials related not only to the task performance but also to substitution and stimulation experiments were recorded with chronically implanted electrodes on the surface and at a depth of 2.5–3.0 mm in the prefrontal, premotor, motor and prestriate cortices. In the substitution experiment, an examiner lifted a lever for the monkey so that it was watching the light and rewarded without the hand movement. In the stimulation experiment, the same light stimulus was simply delivered to the monkey. In a naive monkey which lifted the lever independently of the stimulus, stimulus-locked potentials were evoked by the task experiment in those cortices except the motor cortex, but none was elicited by the substitution or stimulation experiment. In a welltrained monkey, the substitution and stimulation experiments induced almost the same potentials as those prior to the task movement in respective cortices except the motor cortex, in which the component of cerebellar-induced premovement potential was not observed during the substitution and stimulation experiments. At an intermediate stage of learning, the situation was intermediate between the naive and well-trained stages and most premovement potentials except those in the motor cortex were elicited by the substitution experiment in reduced sizes, but nothing by the stimulation experiment. The present study suggests that the neuronal circuits for the operantly conditioned movement are functionally organized and gradually consolidated in the learning process, and that the consolidation is made earlier for the circuit involving association and premotor cortices than the circuit including the motor cortex in the process. The circuit to the motor cortex via the cerebro-cerebellar interconnection is recruited only on the execution of movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...